
Maybe some of you know me. I’m Juan Vuletich. I develop Cuis Smalltalk.

I want to start by saying ‘Thank You’ to some of the people that made all this possible. By “all
this” I mean Smalltalk, me learning about Smalltalk, 25 years of professional work on Smalltalk,
and the active and vibrant community we have today, especially in Argentina. Thank you Alan,
Dan and Adele. Thank you Máximo and Leandro. Thank you Hernán. Thank you to my
classmates and colleagues, and to the companies I have worked and work for. Thanks to all
the Cuis and Smalltalk community.

Some people here have heard me talk about Cuis before, or may be even used it. Others know
little about it. In this talk I'll tell you why does Cuis Smalltalk exist, which problems it tries to
solve, and why this moment, November 2022, is the most important time in the history of the
project.

Yeah, really!

I will tell you about some things that many of you have heard me talk about before. Most of
those things were then in development. Today, all those things are part of Cuis Smalltalk, so
that’s the big news here.

Cuis is not just "let's do a new Smalltalk and see where it goes". Cuis was started to attack
several important problems I saw in Squeak and the other Smalltalk systems, even knowing it
would take several years to solve them. 

Some words about what happened before Cuis.

Smalltalk-80 was developed following a set of ideas described in “Design Principles Behind
Smalltalk”. This article, published in the August 1981 issue of the Byte magazine, was the first
description of the Smalltalk system that would reach a wide audience.

Here, Dan Ingalls tells us that Smalltalk-80 was built to provide computer support for the
creative spirit in everyone.

The objective of these specific ideas, these are specific ideas, is to allow programmers to
understand, modify and extend any part of the system. The usual separation between our work
and a tool that was provided by a third party is completely removed.

Removing unneeded barriers gives developers an unprecedented level of freedom. 

In 1996 Squeak Smalltalk was born. To develop Squeak, Alan Kay formed a dream team that
included Dan Ingalls, Ted Kaheler and Scott Wallace from the original Smalltalk group, together
with John Maloney from the team that built Self and Morphic. Later other talented and creative
people joined the team.

Squeak was a direct descendant of Smalltalk-80, and it was true to its goals and design ideas.
Making it open source and freely available on the Web meant that an enthusiast community of
collaborators grew around it.

Squeak later made its focus to become a platform for education, around 1999 perhaps, drifting
away a bit from the design principles that had guided Smalltalk-80. This started a whole new
generation of educative software, that includes Etoys and Scratch, and other tile-based
programming systems for education. 

Smalltalk-80 and Squeak are different from commercial Smalltalks in many ways. Most have to
do with portability and control, and are consequences of applying or not, the Design Principles.

The features offered by the Virtual Machine to the Smalltalk environment are minimalistic and
platform agnostic. More important, they don’t include arbitrary decisions on how the system,
and especially User Interfaces build with it, should work.

This means that GUIs as different as MVC in Smalltalk-80 and Morphic in Squeak use exactly
the same VM services. The level of flexibility offered to the developer is undeniable.

But most Smalltalk systems abandoned this approach, becoming more closely integrated with
some host Operating System. When Squeak was started from Apple Smalltalk, one of the
things that needed to be done, and I’m quoting the ‘Back to the Future’ paper was to
“eliminate uses of Mac Toolbox calls to restore Smalltalk-80 portability”.

This should tell us something, right? 

But a few years later Squeak was left in the hands of its community. Those using Squeak
became aware of some problems.

• Squeak can't evolve easily any more because of to excess complexity.

• Morphic is tied to Display pixels. Attempts to solve this limitation (first using WarpBlt and

later the Balloon engine by Andreas Raab) were not enough.

• The graphics engine should provide services to draw curves and other graphics primitives,

not just lines, boxes and text

• Writing new Morphs is too hard. Programmers must deal all the geometry and drawing

themselves. Morphic is complex, and it doesn't try hard enough to ease the life developers.

• StrikeFonts were OK in the 70s and 80s, but 1 bit per pixel bitmap fonts don’t look good on

modern LCD screens anymore.

• The Unicode support later added to Squeak requires programmers to have deep knowledge

of text encodings to avoid displaying garbage.

I understood that the root cause of the problems Squeak was running into, was leaving behind
the Design Principles. I decided to solve these problems one by one, by following them again. 

There weren't any retina displays yet, but it was clear to me that GUIs designed for a specific
pixel density had no future. I wanted a Morphic system where everything was specified
independently of pixel size or resolution.

But a large community of people, now without a strong leadership as we had before, and with
a deep devotion for their heritage, was not ready for the disruptive kind changes that were
needed to go where I wanted to go.

In 2003 I got the chance to meet with Alan Kay. During that talk, I told him about these ideas.
About that time, Andreas Raab was working on his own replacement for Morphic, he called
Tweak. So I asked Alan: "Should I wait for Tweak, and maybe adopt it?". He said: “That is a
very good question. And the answer is always the same. No, you should not wait. You should
never wait.”

I followed his advice. Cuis Smalltalk was derived from Squeak in 2004, and ever since it has
been evolving into a modern incarnation of the Smalltalk-80 spirit. 

These are some project landmarks over 19 years.

During this time, Cuis was updated to the latest developments in the Squeak world, adopting
the OpenSmalltalk VM, that included support for true block closures, a high performance jitter,
and later, 64 bit support.

Other developments were done specifically for Cuis. This includes a huge cleanup, reduction
and refactor of almost every part of the system. Additionally, I added a source code format for
optional code packages, and a workflow to enable collaboration on GitHub.

But the most important pieces of work were done to solve the problems I found in Squeak.
Let’s go over them. 

Global Coordinates.

Because every Morph uses global integer pixel coordinates, all the GUI related code, needs to
deal with them all the time. Anybody who tried to build new Morphs know how complicated
things can get. Just moving a morph around on the screen will mean updating the coordinates
for dozens of nested submorphs. Scaling and rotating become very complicated.

The solution was already suggested by John Maloney in an interview done for the SqueakNews
electronic magazine in 2001. Every Morph should define the space and coordinate system in
which its submorphs will live. Coordinates are real numbers, not integers. The programmer of a
Morph only needs to deal with the geometry that makes for that morph, and don’t care about
anything else. All conversions and other technical details should be handled by the framework.

Converting Morphic from the old design into this new design took several years and was done
in small, incremental steps. Assuming that it is reasonable to call “Morphic 1” the original
implementation in Self, and “Morphic 2” the version in Squeak, I decided that “Morphic 3” was
a good name for this new design. 

Visual quality of Graphics.

In those times, we’re talking 20 years ago, the quality of graphics drawn by most applications
was not very good, and LCD displays only made this more evident. Commercial applications
tried to make this less obvious with the heavy use of hand drawn bitmaps done by professional
graphics designers. The reason is that, even if they try to do some Anti Aliasing, the
conventional pixel coverage technique can’t really avoid pixellation.

Most graphics software is still written with the idea of pixels as square tiles covering the
screen.

In addition, the set of drawing primitives provided by Squeak is limited.

The solution involved some real work.

The theory to describe aliasing and how to avoid it has been part of the fields of Optics and
Signal Processing for decades. Designers of photo and movie cameras know very well that
they need to match the optical system (the lens) to the sensor, and usually add a low pass filter.
Designers of digital sound recording systems know they must do a proper low pass filtering
before sampling audio.

What I needed was a practical way to do the same thing for Vector Graphics. After maybe a
couple of years of fighting this problem, the solution I found is so simple and effective, that I
decided I needed to protect it with a Defensive Publication before publishing the code. I could
go into more detail on why that is important, but maybe there’s no need. I hope. 

Visual quality of Text.

The quality of text in Squeak was not very good, and LCD displays made this more evident.

Around that time frame, mainstream operating systems adopted text specific rasterization
engines, and they developed special tricks to reduce blurriness and make the result look better,
sometimes even getting patents on them. These text specific rasterizers include ClearType,
FreeType and Quartz. The tricks they use, prevent the implementation of features like rotated
text, and they result in incorrect geometry, and text that just looks weird. Compare, for
example, Windows Notepad and Acrobat Reader, and maybe zoom the display and see how
different their text looks.

But the Vector Graphics Engine I wrote for Cuis is geometrically correct and subpixel sampled.
It can offer the same level of quality as text specific engines, but can also do arbitrarily rotated
and scaled text. This makes text fit naturally into the improved Morphic system.

The solution also involved designing a new Smalltalk model for TrueType, using Floating Point
coordinates to represent the Bezier curves that Glyphs are made of, and adding new services
to Vector Graphics Engine to deal with Text and TrueType. 

Unicode.

This big problem is not limited to Smalltalk!

What follows is a short version the paper I wrote for the FAST Workshop that is part of this
conference, named “Unicode support in Cuis Smalltalk”. I suggest that you take a look at the
paper.

So, Why does everybody have trouble with Unicode? And by “everybody”, I mean
EVERYBODY, ok?

The main reason is backwards compatibility. In Cuis, we were able to take a fresh look at
Unicode and try to come up with good solutions, without being limited by compatibility with
existing applications. 

Let’s ask these basic questions.

What is a String?

Everybody knows that a String is a sequence of bytes that represent characters. This is so, at
least, since C, ok?

What is an ASCII String? Well, the same as a String, right? It is a sequence of bytes that
represent characters.

So, what is an Unicode String? Well, it is a String, but now several bytes may represent a single
character.

Right?

No. This is not right. This is wrong! 

Well, this is Smalltalk, right?

A language that was designed to let any programmer define new data types.

We need to think a bit what we would like Strings and Characters to look like. What protocol
makes more sense for them. And then, implement only that, as the public protocol for the
related classes.

So, a String is a data type with an external protocol that behaves like a sequence of
Characters. Not what we said before.

And a Character is a data type that represents an element in a written language, and its
external protocol must reflect that.

Their internal representation is irrelevant to users and is protected by encapsulation. There may
be a family of implementations that are interchangeable thanks to polymorphism.

And most users, most programmers, don’t care about these details at all. 

The language and libraries should never require the programmer to know the encoding of some
String, only because the implementation doesn’t know by itself.

Encoding (from String to Bytes) should always answer a ByteArray. Decoding, to get a String,
should only be done on ByteArrays.

An operation that takes a String, encodes it with some encoding, and the answer is a String is
wrong. It is broken and the answer makes no sense.

Access methods should never handle words or bytes, just Characters. The only exception may
be private methods, used only by the implementation itself.

In short, Strings should work just like Numbers!

• There are many kinds of them

• They use different kinds of bit patterns internally

• You don’t usually care about that

• They can convert themselves into each other’s types as needed to be compatible in

operations 

I designed a new data structure to represent glyphs, this is, the contours built with Bezier
curves. It uses only two objects per TrueType font: One large IntegerArray for indexing, and one
even larger FloatArray for geometric parameters.

This data structure let’s us find the position in the FloatArray for the information about any code
point using only 1 to 4 array accesses using the already available UTF-8 bytes. It is integrated
in the VM plugin for the Vector Engine, making text display very fast, even if applying any
geometric transformation as Morphic 3 allows.

Making the Text Editors work on Unicode Strings was very simple, because of polymorphism
between String classes. Little code needed modification, and it was only because Unicode
Strings are immutable (they don’t have the #at:put: operation).

To support Unicode text files, I decided to create a new File Stream class. The reason is that
the old file modes “text" and “binary" no longer make sense. This new class can write Strings
and Characters (in UTF-8), but also bytes and words. The “mode" is only used for reading, for
how to interpret a file. The included modes are UTF8, the default, and also bytes or possibly
other encodings for Strings. 

As everything, from files to text editors, is already Unicode ready, nothing else is needed to use
Unicode in code comments and String literals.

But the Smalltalk language lets us only use letters in selectors, class names and variable
names. As Unicode “knows” which code points are letters in some script, all that was needed
was to modify Parser to take advantage of this information.

Now Smalltalk models can be written using the alphabet of the language for which the model is
intended. Not everybody will use this, but it can be helpful for software that is very specific to
some country. To make the entities in a Smalltalk model better reflect reality, you can write the
names that are used in that language using its own alphabet.

In the same way, I made Parser accept any Unicode mathematical symbols as binary
operators, not just the ASCII ones. This means a lot more expressive power for Math related
code. 

All this required a redesigned, more advanced User Interface famework, that besides being
more flexible, it is more comfortable and easier to code for. If you think this may be a biased
opinion (it is fair to assume that), you can ask Hilaire Fernandes, and his experience in porting
DrGeo from Squeak, then to Pharo, and then to Cuis, where it lives today.

BitBlt was still state of the art 25 years ago, and that was 20 years after you Dan invented it,
maybe 45 years ago. In Cuis, instead of staying with a graphics model that is finally fair to say
it is a bit outdated, or calling some external library (that would be perhaps the usual approach),
we use a new, state of the art Vector Graphics engine, using newly developed techniques. It is
written in Smalltalk and is now part of the OpenSmalltalk virtual machine.

The text layout and text editors from Squeak were enhanced and modernized.

A Smalltalk model for TrueType fonts, that is closely integrated with the VectorGraphics engine
for performance. This is a big improvement over the StrikeFonts from Smalltalk-80, because
they are scalable and high quality.

An implementation of Unicode, written 100% in Smalltalk. 

Cuis was developed without commercial or financial pressure.

While it has been used by several companies, building commercial products, this never
conditioned its evolution.

Still, having expectations from “serious” users has been positive, because it helped us focus
also on reliability and performance. 

So far, the only end user application taking full advantage of Cuis and Vector Graphics is
DrGeo by Hilaire Fernandes.

But Cuis is only now becoming mature enough to build a next generation of interactive
software in Smalltalk.

This is a great time to take a good look at it. 

Cuis has an active community of about 50 developers. Many of them contribute with bug
reports, fixes, enhancements, questions and answers in the mail list.

These are the names of people who have done significant code contributions to Cuis.

We usually have technical discussions to reach consensus on technical decisions on our mail
list. Also any issues that might affect external projects are raised, discussed and solved.

The community is friendly, and the traffic is reasonably low.

You are welcome to subscribe and say ‘Hi!’ 

Many of the people who inspire our work, are aware of Cuis and have praised it.

At the left you see their names, and the nice words they had for Cuis. Besides making me
deeply proud, these are important because they mean, that to some point at least, we
understood, what they tried to teach us.

It also mean that Cuis is a worthy member of their lineage.

Cuis is also appreciated by the people who decide to use it for their projects, and to be active
members of our developers community. On the right column, you see some of their names and
what they think about Cuis.

That’s all. Thank you.

