
HaverOnCuis Documentation
Release 0.0.0

Gerald Klix

May 10, 2021

CONTENTS

1 Overview 3
1.1 Simple Example . 3
1.2 Installation . 4
1.3 Starting the Image . 4
1.4 Internet Presence . 4
1.5 Releases . 5

2 Themes 7

3 The Semantics of Environments and Modules 11
3.1 Description . 11

3.1.1 Environments . 11
3.1.2 Modules . 11
3.1.3 Interfaces . 11
3.1.4 Imports . 12
3.1.5 Renaming . 12
3.1.6 Packages . 12

3.2 Formal Semantics . 12

4 Module Tools 15
4.1 The Modules Browser . 16
4.2 The Module Browser . 16
4.3 The Default Module Browser . 17
4.4 Modifications to Existing Tools . 22

4.4.1 System and Hierarchy Browser . 22
4.4.2 Workspaces . 22

5 Tutorials 25
5.1 Exporting and Importing a Class . 25
5.2 Using the Export/Import Wizard . 26

6 UI Tools 27

7 Virtual Machine 29

8 Defects 31
8.1 Defects Fixed . 31
8.2 Know Limitations . 33
8.3 Bug Reporting . 33

9 Future 35
9.1 App Image Creation . 35
9.2 Single File Application Deployment . 35
9.3 Application and Package Distribution . 36
9.4 Really Far Reaching Ideas . 36

i

9.4.1 Implement Python inside Haver . 36
9.4.2 Implement JavaScript inside Haver . 37
9.4.3 Implement a Sista Aware Compiler . 37
9.4.4 A Web Browser in Haver . 37

10 Releases and Planning 39
10.1 Minimum Viable Product . 39
10.2 Alpha . 39
10.3 Beta . 40
10.4 Release Candidate . 40

11 The Haver 41

12 Acknowledgements 43

13 Copyright 45

14 License 47

15 Imprint 49

16 Search The Documentation 51

ii

HaverOnCuis Documentation, Release 0.0.0

News

• Added a Future section.

• Added a release plan for for Alpha 1 and Alpha 2.

• Haver now has a blog, called The Haver.

CONTENTS 1

HaverOnCuis Documentation, Release 0.0.0

2 CONTENTS

CHAPTER

ONE

OVERVIEW

HaverOnCuis – for short Haver – provides an opensmalltalkvm based Smalltalk with modules. Haver’s module
semantics are inspired by Python’s modules and, to a greater extent, by Scheme’s module semantics.

Important: Please note that Haver is an extension of Cuis and not a fork. For any conceivable future it will
remain an extension!

Haver’s name was inspired by the Proclaimers’ song ‘I’m Gonna Be (500 Miles)’:

And if I haver, hey I know I’m gonna be
I’m gonna be the man who’s havering to you

1.1 Simple Example

Classes with the same name as global classes can be placed in a module like this:

SystemWindow subclass: #SystemWindow
instanceVariableNames: ''
classVariableNames: ''
poolDictionaries: ''
category: 'SystemMorphs'
inModule: #SystemMorphs

This class can be accessed like this:

Modules>>#SystemMorphs>>#SystemWindow

Environments can be created with this message send:

Modules environment: #MyNewModule

If one uses >> like:

Modules>>#MyOldModule.

the module is not created, if it does not exist.

3

http://haver.klix.ch
http://haver.klix.ch
https://github.com/OpenSmalltalk/opensmalltalk-vm
http://haver.klix.ch
https://docs.python.org/3/reference/import.html
http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-10.html#node_chap_7
http://haver.klix.ch
https://cuis-smalltalk.github.io

HaverOnCuis Documentation, Release 0.0.0

1.2 Installation

In the future Haver can be downloaded from https://www.klix.ch/haver/releases:

• Haver-unix-linux-gnu-x86_64-64bit.zip for 64-bit Intel x86 Linux system

• Haver-unix-linux-gnu-aarch64-32bit.zip for Raspberry Pies with the latest 32-bit userspace and 64-bit
kernel.

• Haver-unix-linux-gnueabihf-armv7l-32bit.zip for Raspberry Pies with an old 32-bit userspace and ker-
nel.

• Haver-Win32-6.2-X64-64bit.zip for 64-bit Windows (10).

Currently there is no MacOS version available1. However you can provide your own and use the images.

1.3 Starting the Image

The file should be unzipped like2

unzip Haver-linux-gnu-x86_64-64bit.zip

cuis

Will start the original Cuis image, with no updates installed.

haver

Will start the original Haver image, with all updates installed3.

1.4 Internet Presence

The whole documentation is available at in the following formats:

HTML http://haver.klix.ch/ (Also serves as Haver’s homepage)

PDF http://haver.klix.ch/pdf/HaverOnCuis.pdf

Development takes place on sourcehut:

Development https://sr.ht/~cy-de-fect/HaverOnCuis/

Repository (Mercurial) https://sr.ht/~cy-de-fect/HaverOnCuis/

Issue Tracker https://todo.sr.ht/~cy-de-fect/HaverOnCuis

IRC irc://freenet.net/#Haver

IRC channel called #Haver at freenode. My nickname is CyDefect, usually I am available
there.

1 This probably will not work on windows.
2 Needless to say, that only the updates available up to the zip-file creation time are included.
3 Due to COVID-19-induced financial restrictions this will be the case for the foreseeable future.

4 Chapter 1. Overview

http://haver.klix.ch
https://www.klix.ch/haver/releases
https://www.klix.ch/haver/releases/Haver-unix-linux-gnu-x86_64-64bit.zip
https://www.klix.ch/haver/releases/Haver-unix-linux-gnu-aarch64-32bit.zip
https://www.klix.ch/haver/releases/Haver-unix-linux-gnueabihf-armv7l-32bit.zip
https://www.klix.ch/haver/releases/Haver-Win32-6.2-X64-64bit.zip
https://cuis-smalltalk.github.io
http://haver.klix.ch
http://haver.klix.ch/
http://haver.klix.ch/pdf/HaverOnCuis.pdf
https://sr.ht/
https://sr.ht/~cy-de-fect/HaverOnCuis/
https://www.mercurial-scm.org/
https://sr.ht/~cy-de-fect/HaverOnCuis/
https://todo.sr.ht/~cy-de-fect/HaverOnCuis
irc://freenet.net/#Haver

HaverOnCuis Documentation, Release 0.0.0

1.5 Releases

You will find information about releases and release-planning in the Releases and Planning section.

1.5. Releases 5

HaverOnCuis Documentation, Release 0.0.0

6 Chapter 1. Overview

CHAPTER

TWO

THEMES

Haver adds two new themes to the standard themes.

A dark theme called HaverDarkTheme:

Fig. 1: Haver’s dark theme.

and another theme called HaverDarkPhisherBryceTheme.The later adds distinctive colors for the shout syntax
highlighting and is the default theme1:

Themes can be selected with the Preferences menu – select World → Preferences → Themes and answer any
questions with “No”:

1 I am aware that some people will accuse me of endangering them with eye cancer, but the colors help me to overcome the disadvantages
of my diminishing eyesight.

7

http://haver.klix.ch
http://haver.klix.ch

HaverOnCuis Documentation, Release 0.0.0

Fig. 2: Haver’s dark theme with distinctive syntax highlighting colors.

8 Chapter 2. Themes

http://haver.klix.ch

HaverOnCuis Documentation, Release 0.0.0

Fig. 3: Cuis’ preferences menu.

9

https://cuis-smalltalk.github.io

HaverOnCuis Documentation, Release 0.0.0

10 Chapter 2. Themes

CHAPTER

THREE

THE SEMANTICS OF ENVIRONMENTS AND MODULES

This section describes the semantics of modules.

3.1 Description

The following sections provide a sketchy description of the semantics of modules.

3.1.1 Environments

Modules are bases on so called environments. Environments fulfill basically the same purpose as Smalltalk the
single instance of SystemDictionary. They bind names that objects. Nearly all of the objects bound in an
Environment are classes. All classes in an environment are immediately available to the code in all other classes
bound the same environment by just mentioning their name. Obviously classes defined in an environment can be
used by classes outside their environment only with some hassle.

3.1.2 Modules

Modules however provide means to make bound names available to other modules by exporting them. Exported
symbols can be grouped into so called Interfaces. Otherwise Modules are just environments.

3.1.3 Interfaces

Interfaces can be imported by other modules.

When a module is created it starts out with two Interfaces:

API The Application Programming Interface This interface should contain all the classes that are
useful to the module’s clients, that is to classes that want use (instances of) the modules classes.

SPI The System Programming Interface This interface is created as an alias of the API1. It should
contain all classes another module or class needs to enhance the functionality of the exporting
module. Usually this is done by sub-classing these classes.

Some of Haver’s own modules defined so called UTIs (Unit Test Interfaces) that export classes which are not
exported by the SPI. This should make white-box testing easier.

Note: Of course one can name a module’s interfaces as one pleases.

1 There is no UI-support to explicitly create interfaces that are aliases for other interfaces. Likewise new interfaces can not be created as
an alias.

11

http://haver.klix.ch

HaverOnCuis Documentation, Release 0.0.0

3.1.4 Imports

Modules can import an interface by creating an Import Specification. Import Specifications can import an interface
of another module as a whole or they can explicitly select symbols of an interface. It also possible to specify, that
you want to import all symbols of an interface and exclude it some of the exported symbols.

It is possible to import an interface more than once into a module.

3.1.5 Renaming

Symbols can be renamed upon export and import.

3.1.6 Packages

Each module, interface, exported symbol, import specification and imported symbol has an associated package,
denoted by the package’s name. The default package name is the module name (of the interface, exported symbol,
import . . .).

The export an import definitions are stored in the package-file of the package denoted by the package name.

Note: This makes it possible to specify a different package name for a Unit Testing Interface UTI and store the
definition of this interface in a special unit test package.

The FileFinder package and its unit test package is a good example for this technique.

3.2 Formal Semantics

In the following section I try to give a formal definition for the semantics of modules and environments.

Environment Identifiers The set of “Environment Identifiers” is a finite set of arbitrary
Smalltalk objects.

Symbols In essence symbols are immutable strings.

Symbols come in two variants:

Interned Symbols “Interned Symbols” are those symbols known to the symbol class. Two
interned symbols are identical wrt. to == when their character strings are equal wrt. =. This
code snipped may serve as an explanation:

('one', 'two') asSymbol == 'onetwo' asSymbol

evaluates to true2. Especially:

Symbol lookup: 'onetwo'

and:

Symbol lookup: 'one', 'two'

should evaluate to the same symbol: #onetwo

Uninterned Symbols All other symbols are uninterned.

All symbols in Haver respond to the message environment. All interned symbols answer nil when the message
environment is sent no them.

2 This should be true for every Smalltalk implementation.

12 Chapter 3. The Semantics of Environments and Modules

https://hg.sr.ht/~cy-de-fect/HaverOnCuis/browse/haver/packaging/FileFinder.pck.st
https://hg.sr.ht/~cy-de-fect/HaverOnCuis/browse/haver/packaging/FileFinderTest.pck.st
http://haver.klix.ch

HaverOnCuis Documentation, Release 0.0.0

Local Symbols Local symbols answer an environment identifier when the message environment
is sent to them. This environment is not nil.

It follows from above propositions, that all local symbols are uninterned symbols.

Environments “Environments” are mappings from local symbols to arbitrary Smalltalk objects.
All symbols in the domain of the aforementioned mapping answer the environment when sent
the message environment.

A local symbol can be created from any symbol by sending the message #forEnvironment: to it. The message
needs an environment identifier as an argument.

Bound Symbol A bound symbol is a symbol that is the domain of an environment’s mapping.

Modules “Modules” are environments associated with two other sets, A set of interfaces and a set
of import specifications.

Export Specification An export specification is a mapping from a symbols to symbols.

Invalid Export Specifications An “invalid export specification” is an export specifica-
tion whose domain symbol is not bound in the module.

Interface An interface is a set of export specifications.

Symbol Import Specification An “symbol import specification” is mapping from an ex-
port specification to a symbol.

Import Specification An import specification is a pair consisting of an interface and a set of
symbol import specifications.

Invalid Import Specification An “invalid import specification” is an “import specifica-
tion” if its interface is not a member of any module’s set of interfaces.

Invalid Symbol Import Specification An “invalid symbol import specification” is a
symbol import specification if its export specification is not a member of any module’s interface
or if its export specification is invalid.

The mappings in export specifications and symbol import specifications provide a means to rename a symbol on
export and on import.

If the compiler uses #bindingOf: to find the binding of a global variable the binding is searched first in the
environments then in Smalltalk.

In the case of an environment the binding only searched in the bindings of an environment3.

In the case of a module the same is done. If this yields no binding, all valid symbol import specifications are
searched for a matching name and the association in the exporting module is answered.

3 Of course users may implement their own environment managers with vastly different semantics.

3.2. Formal Semantics 13

HaverOnCuis Documentation, Release 0.0.0

14 Chapter 3. The Semantics of Environments and Modules

CHAPTER

FOUR

MODULE TOOLS

Haver provides three UI tools to deal directly with modules. Additionally the browsers have been enhanced to
select a current module for various purposes.

Both tools can be opened by using the (enhanced) Open menu – select World → Open:

Fig. 1: Haver’s Open menu.

15

http://haver.klix.ch
http://haver.klix.ch

HaverOnCuis Documentation, Release 0.0.0

4.1 The Modules Browser

Fig. 2: The Module Browser (Video)

The modules browser on can create, rename, remove and browse modules. All the actions can either be performed
with the usual pop-up menu or with the buttons at the top of the window.

Note: If the module name is highlighted with yellow the module has no package it can be stored in. In this case
you can either define a package with same name as the module or assign a package name with Package . . . button.
This video shows how it’s done.

The hierarchical list contains all modules defined in the image at the first level. The second level shows all the
objects bound to names local to the module.

The Inspect It . . . and the Explore it . . . open an Inspector or an Explorer on the selected item:

When a module is selected the Browse It . . . button opens a Browser to change the module’s exports and imports.

4.2 The Module Browser

As mentioned in before the module browser can be opened by selecting a module in the modules browser and
push the Browse It . . . button:

The following sketches the various actions the module browser can perform:

A brief explanation of all the actions the module browser’s actions on interfaces and exported symbols follows
suit:

Package . . . Set the package of the selected item as show in this video.

New . . . Asks for a interface name and creates an interfaces with that name.

Remove . . . Removes the selected module from the collection of modules.

Rename . . . Asks for a new interface name and renames the interface.

Add . . . Displays a menu of symbols bound in the module and lets you chose one to export. The
same effect can also be achieved by dragging a symbol bound in the module to interface item.

Remove . . . Removes the selected symbols from the interface

16 Chapter 4. Module Tools

http://haver.klix.ch/_static/ModulesBrowser1.mp4
_static/AttachPackageToModule.mp4
_static/AttachPackageToModule.mp4

HaverOnCuis Documentation, Release 0.0.0

Fig. 3: Opening the Module Browser (Video)

Edit . . . Edits the name of the exported symbol.

The actions possible on import specifications are explained here:

Package . . . Set the package of the selected item.

New . . . Displays a menu of modules and the a menu of interfaces exported by the selected module.
The same effect can be achieved by drag and drop.

Remove . . . Removes the selected import from the collection of imports.

Add an exported symbol An exported symbol can only be added by drag and drop1.

Import all This action removes all explicitly imported symbols and again imports all symbols the
interface exports.

Exclude This imports all symbols exported by the interface excluding those explicitly mentioned.

Edit . . . With this action you can rename an imported symbol.

Remove . . . Removes the selected symbol from the collection of imported symbols.

This video shows the effect of the aforementioned actions:

4.3 The Default Module Browser

To make working with modules easier a browser that lets one select a default module where classes are defined in
and global symbols are searched before they are looked up in Smalltalk.

This video should explain the semantics of the default module settings:

The default module browser is especially helpful, when one wants to file a non-module-aware package into a
module.

Finally we can define API and SPI for the Spacewar! package:

1 I wanted to avoid the three consecutive menus this would have needed. It’s ugly to implement and unpleasant to operate.

4.3. The Default Module Browser 17

http://haver.klix.ch/_static/OpenModuleBrowser.mp4

HaverOnCuis Documentation, Release 0.0.0

Fig. 4: The Module Browser’s Actions

18 Chapter 4. Module Tools

HaverOnCuis Documentation, Release 0.0.0

Fig. 5: The Add action (Video)

Fig. 6: Importing an interface (Video)

4.3. The Default Module Browser 19

http://haver.klix.ch/_static/AddExport.mp4
http://haver.klix.ch/_static/AddImport.mp4

HaverOnCuis Documentation, Release 0.0.0

Fig. 7: Adding a specific symbol to an imported interface (Video)

Fig. 8: Additional actions on imported symbols (Video)

20 Chapter 4. Module Tools

http://haver.klix.ch/_static/ImportSymbol.mp4
http://haver.klix.ch/_static/AdditionalImportActions.mp4

HaverOnCuis Documentation, Release 0.0.0

Fig. 9: A longer video explaining the Default Module Browser

Fig. 10: Convert the Spacewar! package into a Spacewar!-module and -package (Video).

4.3. The Default Module Browser 21

http://haver.klix.ch/_static/GlobalDefaultModuleBrowser.mp4
http://haver.klix.ch/_static/Modularize.mp4

HaverOnCuis Documentation, Release 0.0.0

Fig. 11: Define interfaces for the Spacewar! module (Video)

4.4 Modifications to Existing Tools

The following tools were modified to make Smalltalk development with modules easier.

4.4.1 System and Hierarchy Browser

The System and the Hierarchy Browser windows were modified to contain a local default module browser, with
the same functionality as the global default module browser.

If want to define Module named Scratch one can perform the steps shown in the video below:

4.4.2 Workspaces

While objects – especially classes – bound in modules can be accessed with the >>, the Workspace window menu
gained a modules sub menu.

22 Chapter 4. Module Tools

http://haver.klix.ch/_static/ModularizeInterfaces.mp4

HaverOnCuis Documentation, Release 0.0.0

Fig. 12: Define a package, a category, a module and two classes in four simple steps.

Fig. 13: The Workspace Modules Menu (Video)

4.4. Modifications to Existing Tools 23

http://haver.klix.ch/_static/LocalDefaultModuleBrowser.mp4
http://haver.klix.ch/_static/WorkspaceModulesMenu.mp4

HaverOnCuis Documentation, Release 0.0.0

24 Chapter 4. Module Tools

CHAPTER

FIVE

TUTORIALS

This section contains tutorials that (should) guid the user through various use cases of Haver’s module system.

5.1 Exporting and Importing a Class

In this tutorial we will define two classes in two different modules:

1. Define the two classes and implicitly both modules.

2. Export one class in its modules application programming interface and import it in the module.

3. Use the one class in a method of the other class.

25

http://haver.klix.ch
http://haver.klix.ch/_static/SimpleImportTutorial.mp4

HaverOnCuis Documentation, Release 0.0.0

5.2 Using the Export/Import Wizard

In this tutorial we will define two classes in two different modules and let the wizard export and import one of the
classes into the other module.

26 Chapter 5. Tutorials

http://haver.klix.ch/_static/ExportImportWizard.mp4

CHAPTER

SIX

UI TOOLS

Haver provides some additional tools to create user interfaces. These tool were written to implement the module
related browsers.

TBD

27

http://haver.klix.ch

HaverOnCuis Documentation, Release 0.0.0

28 Chapter 6. UI Tools

CHAPTER

SEVEN

VIRTUAL MACHINE

The virtual machine delivered all with distributions of Haver are a custom build ones, which include Juan’s awe-
some VectorEnginePlugin . Their build information looks something like this:

'VM: 202104160938-HVR_MVP_ALPHA1 bear@speedy:gitwork/opensmalltalk-vm Date: Fri
→˓Apr 16 11:38:38 2021 CommitHash: 0e06535be Plugins: 202104160938-HVR_MVP_ALPHA1
→˓bear@speedy:gitwork/opensmalltalk-vm'

29

http://haver.klix.ch
https://lists.cuis.st/mailman/archives/cuis-dev/2021-April/002928.html

HaverOnCuis Documentation, Release 0.0.0

30 Chapter 7. Virtual Machine

CHAPTER

EIGHT

DEFECTS

As we all know, no saftware is bug-free, especially when it contains more than three line of code.

8.1 Defects Fixed

f49a8518-e49e-4235-821a-68b0d2e9ba38 Patch the SystemDictionary>>#renameClass:
Did it in another way, perhaps this method must be patched, too.

OPEN 2020-12-05 12:13:50 | BUSY 2020-12-05 18:06:41 | TESTING 2020-12-05 18:47:29

ea672ea8-1eb6-4d9f-829e-5539d3fc406b The versions browser does not diff, reverting
versions does not work.

OPEN 2020-12-06 14:20:21 | TESTING 2020-12-06 15:09:06 | WATCHING 2020-12-09
17:09:58 | DONE 2020-12-21 18:31:50

57400aef-d0ac-483a-a9ff-5b3d1b331921 Reexporting imported symbols will not work.
This statement is subject to testing, it was derived solely on theoretical considerations.

The current implementation is untested and crappy, it will not work (2021-01-05).

1) Will remove the imported symbols from the list of bound symbols. (DONE 2021-02-18
13:10:08)

2) Will enable drag and drop for imported symbols. (DONE 2021-02-18 20:31:56)

OPEN 2020-12-06 15:07:50 | BUSY 2021-01-03 14:53:26 | TESTING 2021-01-03 17:27:26 |
BUSY 2021-02-18 12:56:57 | TESTING 2021-02-18 20:32:15

030be14a-5be0-43e7-bd8b-630c3dc28b49 Investigate why using a newly created class in
a modules or environment in existing classes’ code requires recompiling that class. (Might be
our missing undeclared handling). Maybe creating new associations messing up #declare:using:
is root of this evil. #declare:using: sends #add: which copies the association it adds. Redefining
global classes does not work. It should trigger a recompilation.

OPEN 2020-12-07 12:35:51 | DIAGNOSIS 2020-12-10 14:22:07 BUSY 2020-12-13 17:41:33 |
DIAGNOSIS 2020-12-21 18:31:00

fdfb56ab-678f-4893-b242-3f26fd4b95c5

Defining a class in an environment with the same name as a global class defined in
Smalltalk leads class organizer instance-variables in the browser being nil. See the
screenshot below for details.

Browser>>#selectedClassName: answers nil for the global class. Using the
environment-aware class list for filtering does not work. Obviously we have one case
(Action) that is not part of the system organisation. If we have two classes in the same
category; one global, another one in an environment, only one defined last is stored in
the system organisation.

31

HaverOnCuis Documentation, Release 0.0.0

Categorizer>>#classify:under:suppressIfDefault: uses #>= to find the insertion point.
This string comparison is by no means environment aware.

Now even Environments are messed up. Of course they are: The environment-
awareness test-case resets the symbol-manager.

SystemDictionary>>#classNamed: contained dubious code.

OPEN 2020-12-07 16:35:29 | DIAGNOSIS 2020-12-07 22:16:43 STILL OPEN 2020-
12-09 11:03:32 | WATCHING 2020-12-09 17:01:11

31c6b8bb-13ea-4d67-ba86-d5f5904a8346 Filling in a package with modules over an ex-
isting package leaves one with a debugger.

OPEN 2020-12-09 | DONE 2021-03-23

f6795b8d-0e56-4cb5-b5ce-f7cd66b38d3c Removing a module does not remove it’s
classes from the system. Keeping the environments in computations leeds to spurious references.
(WRONG 2021-02-27 19:03:14). Sometimes the class building stuff picks the wrong module.
Got the reason: Classes created by the prameterized class builder are bound in Smalltalk instead
of their proper environment (2021-02-27 19:44:08).

OPEN 2021-02-27 | BUSY 2021-02-27 16:15:13 | DIAGNOSIS 2021-02-27 19:44:08 | TEST-
ING 2021-02-27 19:53:36

ce53a2c6-e7d1-4d74-bef7-ff8ce7b771a4 Using exactly a module Always use <Mod-
ule> does not work in a browser. The same is true for Use category or <Module>. The global
default module setting has no influence. The use category stuff does not even create a class, but
works for the global setting. In general the global looks OK.

OPEN 2021-03-09 | WATCHING 2021-03-23

290b20af-7f6a-4503-af35-51e31689dafc File outs of interface components miss the
package name.

OPEN 2021-04-14 | DONE before 2021-04-28

32 Chapter 8. Defects

HaverOnCuis Documentation, Release 0.0.0

8.2 Know Limitations

96007d90-9859-4176-9688-6d2a59ca188e Sometimes imports of class or classes bound
in a module become undefined; there name is bound to nil. Usually this can be solved be
recompiling the class referenced. For the time being I don’t know the exact reason.

Best theory so far: The class builder does not handle renaming classes correctly wrt. environ-
ments.

See: https://todo.sr.ht/~cy-de-fect/HaverOnCuis/1

Fix: Recompile the class being referenced.

OPEN 2021-04-28

6501e4a4-76b0-4104-a721-9ce895e6892c On rare occasions import specifications do not
point to the export specification they import. Instead they point to the module name symbol.
Usually this means, that your image is broken and needs to be recreated.

No valid theory so far.

See: https://todo.sr.ht/~cy-de-fect/HaverOnCuis/2

Fix: None so far, keep backups :-]

OPEN 2021-04-28

970e8f95-82e7-427f-b47d-d570e4022847 Inspecting the contents of a code file creates
the modules contained in that file. Probably this true for opening a code browser on the package.
Yup it does!

Fix: Delete the spurious module.

See: https://todo.sr.ht/~cy-de-fect/HaverOnCuis/3

OPEN 2020-12-09

7f2bf0b4-8442-4013-a147-fe229ac19608 Change set management is only half imple-
mented. Filing out change-sets with module code may not work, because the author found that
issue not too important.

Fix: Safe your module in package.

See: https://todo.sr.ht/~cy-de-fect/HaverOnCuis/4

OPEN 2021-04-28

8.3 Bug Reporting

An issue tracker can be found at sourcehut: https://todo.sr.ht/~cy-de-fect/HaverOnCuis

8.2. Know Limitations 33

https://todo.sr.ht/~cy-de-fect/HaverOnCuis/1
https://todo.sr.ht/~cy-de-fect/HaverOnCuis/2
https://todo.sr.ht/~cy-de-fect/HaverOnCuis/3
https://todo.sr.ht/~cy-de-fect/HaverOnCuis/4
https://sr.ht/
https://todo.sr.ht/~cy-de-fect/HaverOnCuis

HaverOnCuis Documentation, Release 0.0.0

34 Chapter 8. Defects

CHAPTER

NINE

FUTURE

This sections contains my sometimes sundry about Haver’s future.

9.1 App Image Creation

Add support to create minimal images for application delivery by porting the SystemTracer to Haver. I hope it is
not slow for serious application creation.

9.2 Single File Application Deployment

One way to deploy Smalltalk, Cuis or Haver application is to modify the virtual machine in the following way:

• Only use internal plugins. Modify the display and audio-plugins and the VM’s C code in a way that does
not need to be compiled as shared objects or dynamic link libraries.

• Modify the image loading code in a way, that image can be appended to virtual machine’s executable.

• Additional files, like font or icon-files, can either be incorporated into the image or stored in a ZIP-file that
is also append to the image.

The memory layout is roughly like this:

+----------------+
| Executable |
| |
| ZIP |
| |<--+
Image	
.	
Poiner to	
Image Start	---+
+----------------+

To my understanding ZIP-files are parsed by searching for their central directory, which points to single com-
pressed files. Any cruft should be ignored.

On the other hand, we also can devise a simple linked list format of our own:

+----------------+
| Executable |
| |
| nil |
| |
| Resource N |<-+
| | |

:

(continues on next page)

35

http://haver.klix.ch
http://wiki.squeak.org/squeak/2315
http://haver.klix.ch
https://cuis-smalltalk.github.io
http://haver.klix.ch

HaverOnCuis Documentation, Release 0.0.0

(continued from previous page)

. . :

. . :

. . :
:

| | |
| PTR to R 2 |--+
| |
| Resource 1 |<-|
| | |
| PTR to R 1 |--+
| |
| Image |<-+
| | |
| PTR to Image |--+
+----------------+

9.3 Application and Package Distribution

An AppStore like application distribution application should also be very useful. Obviously there have been such
ideas around for squeak.

I like to call this “App Store” Haver Silo. I should have the following features:

• Distribution of Cuis/Haver updates.

• Distribution of Apps,w hich are just Cuis or Haver images.

• Distribution of packages.

• Distributed hash table based implementation with UPD and builtin firewall traversal1.

• An integrated application to start other applications.

9.4 Really Far Reaching Ideas

All of these ideas need quite a bunch of developers and of course serious funding.

9.4.1 Implement Python inside Haver

With the help of parso it should be easy to create an abstract syntax-tree for Python code with Haver and compile
it to byte code. This can be bootstrapped by inter-process communication between a Python interpreter running
parso and a Haver image. Of course this will need a Python run-time-system implemented in Smalltalk, which is
a lot of work, but doable.

I will enable Haver to use the huge amount of Python software. Combined with Smalltalk’s fix and continue
capability it would make a great Python IDE.

1 I am aware this will not be usable behind the firewall of a big organisation, but that is not the target audience.

36 Chapter 9. Future

https://www.apple.com/app-store/
https://cuis-smalltalk.github.io
http://haver.klix.ch
https://cuis-smalltalk.github.io
http://haver.klix.ch
https://pypi.org/project/parso/
http://haver.klix.ch
https://pypi.org/project/parso/
http://haver.klix.ch

HaverOnCuis Documentation, Release 0.0.0

9.4.2 Implement JavaScript inside Haver

The same approach as sketched above can be chosen to implement JavaScript on top of Smalltalk. Instead of using
parso babel should be used. Alas I am by no way a JavaScript expert.

9.4.3 Implement a Sista Aware Compiler

Implement a new compiler that uses SSA throughout and targets the sista version of the opensmalltalkvm.

9.4.4 A Web Browser in Haver

Once we have JavaScript and Sista in place we can implement a complete web-browser. While this is a realy huge
project, I can image there is demand for a hackable browser, that is not based on Google or Mozilla code.

9.4. Really Far Reaching Ideas 37

https://pypi.org/project/parso/
https://babeljs.io/
https://clementbera.wordpress.com/category/sista/

HaverOnCuis Documentation, Release 0.0.0

38 Chapter 9. Future

CHAPTER

TEN

RELEASES AND PLANNING

A short sketch of the current release plan.

10.1 Minimum Viable Product

The minimum viable product will consist of two releases.

10.2 Alpha

Currently we have public alpha release. This release should provide everything to work comfortable with modules.

Alpha 0 This version is already out in the wild.

Alpha 1 Alpha 1 will be out about 2021-05-11.

Features to be – or already – implemented are:

1. Added a refactoring that enables the user to copy a class from one module to another or to
copy a global class into a module.

2. Added access-level. Not sure if these will stay.

3. Added a wizard to help users deal with undefined global, e.g. captial names. The wizard
tries to import the right classes from other modules with the users’ help.

4. Explained the semantics of modules in more detail.

5. Implement SqueakJS at http://haver.klix.ch as a spike. I would be cool if users can test
Haver in their browsers. Will be done once this release is out.

6. Check whether the latest VM compiles on Linux, if yes merge the VectorEnginePlugin
changes into a new branch and rebuild everything. This will probably postpone the release
date to 2021-05-14 (one day). No joy on this one, include order was fixed in the Squeak-
VMMaker, but not in the Cuis-VMMaker.

Alpha 2 No idea when this version will come out.

1. Invest up to three days into porting Magma. If it is really as Chris’ e-mail suggests, this
will be a cheap and big win. If not, we’ll see . . .

2. Find some means for application delivery.

1. Give the old Squeak SystemTracker a shot. Invest up to two days in getting it running.
If this is successful invest another day to get rid of the ModulesTools-module as a POC.
If anything of this fails we will deploy bigger images.

2. Check whether we can generate an Inno Setup based installer. I did this once for a
Python project, it worked well.

39

http://haver.klix.ch
http://haver.klix.ch
https://en.wikipedia.org/wiki/Inno_Setup

HaverOnCuis Documentation, Release 0.0.0

3. Create self-mounting fuse-based zip-file. I already did some experiments with archive-
mount. A zip file can be appended to executable and the resulting can be made mount-
ing itself. Haver can be started from the mounted file-system, but has problems writing
it’s change log. With some fixes to the image and archivemount ‘s main this should
work Big advantage: Users can generate one-file-apps with additional tools. (Look
Ma, no compiler, no AppImageKit :).

Other things to be done in parallel:

1. Ask the Cuis-community, whether they would support either

• an Haver-based AppStore – HaverSilo – for images and packages. This will be based on some
P2P-protocol.

• or if they would rather like some portable means to distribute single file applications.

Especially ask whether they would support a crowed funded project, that provides long-term-support. After
all the list of dead Smalltalk projects is quit large.

Probably This will take place on Saturdays (2021-05-08).

2. Decide whether to commit to helping Hilaire Fernandes with his Dr. Geo port. Will take two weeks.

Anything MacOS related will require external funding. I only have two broken Macs and can not afford a new
one.

10.3 Beta

There will be a beta release. It will include a tutorial with to create a simple calculator application.

10.4 Release Candidate

The release candidate will be geared towards development of simple standalone application. Haver should help a
single programmer, or a small teams of programmers, to develop applications.

Therefore it should have the following additional features:

• A (simple) object oriented database. Currently there is a string preference for porting Magma to Cuis/Haver.

• Some means to distribute applications for Linux. Hopefully more than just zip files.

• Maybe some means to create windows installers.

Alternatively, if I can obtain (crowd) funding for the single file idea application idea that one may be included.

40 Chapter 10. Releases and Planning

https://github.com/cybernoid/archivemount
https://github.com/cybernoid/archivemount
https://github.com/cybernoid/archivemount
http://haver.klix.ch

CHAPTER

ELEVEN

THE HAVER

Inspired by The Proclaimers’ message board this blog is called The Haver.

2021-05-05 Added access-levels als Swift to modules. I had to implement a specialized compiler
for the export/import wizard and we have environment-local symbols for a long time, I used the
later to install selectors, that are local to the class or to the module for some methods.

Alas I had to do much hanky-panky with the method dictionary and sometimes complete recom-
pilations are necessary, so I am not sure if these will stay. But I could prove a point.

2021-05-06 Really started with export-import wizard. Now we can automatically – the user is
presented a menu – import symbols into a module that are exported by another module.

2021-05-06 Revised and published the release planning in the Minimum Viable Product sub-
section.

41

HaverOnCuis Documentation, Release 0.0.0

42 Chapter 11. The Haver

CHAPTER

TWELVE

ACKNOWLEDGEMENTS

Without Juan Vuletich’s efforts to make Cuis a simple and understandable system, I would not have stood a change
to implement such a complex piece of software as Haver.

Thank you Juan!

Ken Dickey’s PackageEnvironments provided an encouraging starting point for Haver. Ken also provided valuable
input.

Thanks Ken!

43

https://cuis-smalltalk.github.io
http://haver.klix.ch
https://github.com/KenDickey/PackageEnvironments
http://haver.klix.ch

HaverOnCuis Documentation, Release 0.0.0

44 Chapter 12. Acknowledgements

CHAPTER

THIRTEEN

COPYRIGHT

© Xerox Corp. 1981, 1982
© Apple Computer, Inc. 1985-1996
© Contributors to Squeak Project. 1997-2021
© Contributors to Cuis Smalltalk Project. 2009-2021
© 2020-2021 Gerald Klix.

45

HaverOnCuis Documentation, Release 0.0.0

46 Chapter 13. Copyright

CHAPTER

FOURTEEN

LICENSE

Since some parts of Haver are modifications to Cuis we will use the same license as Cuis

MIT License

Copyright (©) Xerox Corp. 1981, 1982
Copyright (©) Apple Computer, Inc. 1985-1996
Copyright (©) Contributors to Squeak Project. 1997-2021
Copyright (©) Contributors to Cuis Smalltalk Project. 2009-2021
Copyright (©) Gerald Klix. 2020-2021.

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Other parts like the

• ActionBuilder

• SystemMorph

• ModulesTools

package use Cuis, but do not modify it. Therefore these parts are under the GNU Affero General Public License.
Other licenses may be obtained upon request.

47

http://haver.klix.ch
https://cuis-smalltalk.github.io
https://cuis-smalltalk.github.io
https://cuis-smalltalk.github.io
https://www.gnu.org/licenses/agpl-3.0.en.html

HaverOnCuis Documentation, Release 0.0.0

48 Chapter 14. License

CHAPTER

FIFTEEN

IMPRINT

Gerald Klix
Rheinstraße 19
79801 Hohentengen am Hochrhein

E-Mail: haver@klix.ch

49

HaverOnCuis Documentation, Release 0.0.0

50 Chapter 15. Imprint

CHAPTER

SIXTEEN

SEARCH THE DOCUMENTATION

• search

51

	Overview
	Simple Example
	Installation
	Starting the Image
	Internet Presence
	Releases

	Themes
	The Semantics of Environments and Modules
	Description
	Environments
	Modules
	Interfaces
	Imports
	Renaming
	Packages

	Formal Semantics

	Module Tools
	The Modules Browser
	The Module Browser
	The Default Module Browser
	Modifications to Existing Tools
	System and Hierarchy Browser
	Workspaces

	Tutorials
	Exporting and Importing a Class
	Using the Export/Import Wizard

	UI Tools
	Virtual Machine
	Defects
	Defects Fixed
	Know Limitations
	Bug Reporting

	Future
	App Image Creation
	Single File Application Deployment
	Application and Package Distribution
	Really Far Reaching Ideas
	Implement Python inside Haver
	Implement JavaScript inside Haver
	Implement a Sista Aware Compiler
	A Web Browser in Haver

	Releases and Planning
	Minimum Viable Product
	Alpha
	Beta
	Release Candidate

	The Haver
	Acknowledgements
	Copyright
	License
	Imprint
	Search The Documentation

