
����������	
���	����������	��	�����������������		

���������������	��������
���������	
������

����������	��������������

����������������������

����� !��"������ ������ ���������

#$%��%$&�&%���&�'�(�)����*�

+),�	
�����-��������.�,���)����

�(�����������
/�.���0�!���	��1�1��2�.���������

3�������1�1�4������	�1��/���	������1�

3�������1�1�4������	�1��	������������

 �����	��'34� %3 �5*�

�������6����/���	����� ���������

7#$�����$��%&�#��'�(�)���#*�

��(���)������-	�.��)��.�)��	�)�1�)���

/�������8�����
������9�.�,���� ��+������

����������������������

����� !��"������ ������ ���������

#$%��%$&�&%���&�

)�����-��������.�,���)����

�

ABSTRACT
In physics, like in other sciences, formulas are specified using
explicit measurements, that is, a number with its unit. The first
step to determine the validity of a physics formula’s evaluation is
to verify that the unit of the result corresponds with the
prospective unit. In software development, physics, financial and
other sciences formulas are programmed using mathematical
expressions based only on numbers, being the units of these
numbers implicitly given by the semantics of the program or
assumed by the programmer's knowledge. Consequently, it is
common that errors result from operating with values expressed in
different units, e.g., dividing a quantity of years by a quantity of
months, without obtaining any type of indication or objection to
this error from the system. In this report, we discuss our
experience designing and implementing a model that solves this
problem reifying the concept of measurement, unit and their
arithmetic. Our model relieves the programmer from the arduous
task of verifying the validity of the arithmetic expressions
regarding units, delegating that responsibility to the system,
thereby, diminishing the errors introduced by the incorrect use of
values expressed in different units. We also show that having
implemented this model with a dynamically typed language
simplified its programming and increased its reusability.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software – Reuse
Models. D.3.3 [Programming Languages]: Language Constructs
and Features – Frameworks, Polymorphism. J.1 [Computer
Applications]: Administrative Data Processing – Financial.

General Terms
Design, Reliability, Languages

Keywords
Measurements, Units, Arithmetic expressions, Dynamic typed,
Smalltalk

1. INTRODUCTION
Mercap Software Corp., based in Buenos Aires, Argentina,
develops financial systems. Therefore, it is essential to us the

validity of the results obtained when applying financial formulas.
For this reason, after struggling for several years with problems
related to using formulas with incorrect parameters, we designed a
model in which all arithmetic operations between measurements
are automatically validated by the system when they are evaluated.
This model is based on representing measurements as first class
objects, that is, an object that encapsulates a number with its unit.
This representation allows the programmer to use measurements
in arithmetic expressions as if they were numbers, but with the
advantage of providing explicit information to the system—
specifically, the measurement’s units.

We see this model’s benefits analogous to the benefits that took
place when programmers went from performing arithmetic
operations using bytes in assembly language, where it was the
programmer’s responsibility to verify carrying problems, among
others, to use more abstract types like Integer, Double or Float,
where the programming language took care of representation
problems. The number abstraction relieved the programmer from
all the validations and verifications that she had to explicitly do
with an assembly language and delegated that responsibility to the
system, achieving therefore, a smaller error rate when performing
arithmetic operations.

Using this measurement model and not only numbers to conduct
arithmetic operations, we obtained greater results than the
prospective ones in several aspects of the software construction
process. Among them, we can name the sense of security that it
creates for the programmer; the fact that it is the system and not
she who must assure the result’s validity regarding the units,
therefore, diminishing the error rate produced by the incorrect
evaluation of formulas or financial functions. If the programmer
performs incorrect operations with measurements, then this error
will not go unnoticed, and the system will inform it when
evaluating a mathematical expression.

Modeling measurements as "first class objects" would have helped
to solve or prevent famous errors like the incorrect use of units in
the Mars Climate Orbiter [1] or during the test of the Star Wars
laser-beam missile defense experiment [12]. Additionally, such
an approach also aids in solving less grandiloquent, although
recurrent, costly and well known errors in the scope of financial
systems development.

The aim of this report is to briefly present the design and
implementation of this model, and how it influences our current
financial system development. We will discuss the main problems
we faced when designing and implementing this model, and how

Copyright is held by the author/owners(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

we solved them. We will also mention the advantages of using an
Object-Oriented dynamically typed language to implement it.

The remaining of this paper is organized as follows. Section 2
shows a motivating example of what can happen when performing
operations with values of incorrect units. Section 3 talks about the
design decisions that we had to make and presents our design.
Section 4 comments on some implementation details. Section 5
highlights the concrete benefits, learned lessons and related work.
And finally, Section 6 presents our conclusions and future work.

2. MOTIVATING EXAMPLE
Financial systems use financial formulas to get data that affects
everything from strategic corporate investment decisions to
client’s interest and dividend payments. It is crucial to assure the
data’s correctness in any current or future evaluation context, in a
natural and encapsulated way.

For example, Figure 1 shows the formula that should be applied to
calculate the result of carrying out a simple investment with a
fixed interest rate (all code examples are given in Smalltalk).

finalCapital := initialCapital * (1 +
 (interestRate * investmentTime))

Figure 1: Simple investment formula
This formula implicitly specifies each variable’s unit that
composes it. The variable “initialCapital” is expected to be a
money quantity. The variable “interestRate”, a percentage
related to a unit of time and for “investmentTime”, a value that
expresses a quantity of time is also expected, but that value can
not be defined with any unit, it has to be the same unit of time that
is used for “interestRate”. As we can see, this information is
not explicitly given by the formula.

A common decision in software development is to use objects that
simply represent “numbers” for these variables, being the
programmer’s responsibility to assure that the implicit
information (i.e. units) of the numbers involved in arithmetic
expressions is consistent with the expected result. For example,
the programmer is the only one who knows that
“initialCapital” represents a quantity of money. The system
only requires of it to respond to the message “* anObject”, no
assertions are made by the system regarding the unit’s correctness.
This allows incorrect values to be used when evaluating this
financial formula without obtaining any type of objection from the
system, although most surely getting one from the user.

In this example of investment calculation, if the interest rate is
expressed in annual terms and the variable “investmentTime” is
expressed in terms of months, the expression will be
arithmetically solved but the result obtained will be incorrect,
since an amount expressed in terms of years has been mixed with
one expressed in months without making any type of unit
conversion.

Figure 2 shows a code example that could be used in these type of
systems.

initialCapital := 100.

interestRate := 0.1.

investmentTime := 6.

finalCapital := initialCapital * (1 +

 (interestRate * investmentTime)).

finalCapital := 100 * (1 + (0.1 * 6)).

finalCapital := 160

Figure 2: Investment formula evaluation
The value of "finalCapital" will be 160 for this case instead of
105, since the formula was calculated for an investment of 6 years
instead of 6 months (or 0.5 years).

One possible solution to this problem could be to ensure that all
parameters of the formula are explicitly converted to the correct
units (i.e. calling a function) before the formula is evaluated. The
main problem with this approach is that the programmer has to
make sure that all formulas in the system make use of this unit
conversion code, which is both inefficient and error prone.

A solution following the good Object-Oriented design practices
would be to encapsulate this responsibility in objects. For
example, if the objects used to evaluate this formula would have
been measurements (as defined in our proposed model), not only
the correct arithmetic would have been done by the system, but
also it could assure the result’s validity regarding its unit.
Evaluating the investment formula using an “interestRate”
expressed in years with an “investmentTime” expressed in
months would cause the system to convert these measurements (in
this case from months to years) to obtain the right result.

Figure 3 shows how this snippet code would be written using our
model. In this case, the objects used as variables in the formula
are not solely numbers but a number with its unit. The variable
“initialCapital” references to an object representing “100
dollars” (obtained for readability reasons by sending the message
“dollars” to the object representing the number 100).

initialCapital := 100 dollars.

interestRate := 0.1 / 1 year.

investmentTime := 6 months.

finalCapital := initialCapital * (1 +

 (interestRate * investmentTime)).

finalCapital := 100 dollars * (1 + (0.1 / 1 year *

 6 months)).

finalCapital := 105 dollars.

Figure 3: Investment code using our measurement model
The system not only converts the measurements to the correct unit
to get the right result, but it also takes care of the simplification
between the “investmentTime” and “interestRate” units, in
such a way that it returns a measurement expressed as a quantity
of money as it was expected. We can see in Figure 4 the system’s
steps for the formula’s evaluation.

fc := 100 dollars * (1 + (0.1/1 year * 6 month)).

fc := 100 dollars * (1 + (0.1/1 year * 0.5 year)).

fc := 100 dollars * (1 + (0.1/1 year * 0.5 year)).

fc := 100 dollars * (1 + (0.1/1 * 0.5)).

fc := 100 dollars * (1 + 0.05).

fc := 100 dollars * 1.05.

fc := 105 dollars.

Figure 4: How the formula is evaluated
As a result “finalCapital” is not just the number 105 (that is
an instance of SmallInteger in the case of Smalltalk) but "105
dollars", an instance of Measurement, the class that represents a
measurement in our model.

3. DESIGN
There were a number of requirements that this model had to fulfill
that influenced its design. They are presented in the following
sections.

3.1 Transparency and Uniformity
Transparency and uniformity for the programmer when operating
with numbers and measurements was the main objective that we
intended to obtain when designing this model. We realized that to
fulfill that objective, measurements and numbers should be
polymorphic, regarding arithmetic protocol such as +, -, / and *
(among others). This decision allowed us to have generic
arithmetic expressions without caring if they were evaluated with
numbers or measurements, as in the capital investment formula
used as example (Figure 1) that can be evaluated with numbers or
measurements.

This design decision brings the advantage of not having to rewrite
existing code nor to have to teach the programmers how to use the
measurement model.

3.2 Measurement and Units Design
A simplified class hierarchy diagram for the measurement’s model
is shown in figure 5.

The abstract class MeasurementBehavior defines shared
arithmetic protocol between measurements and any other
arithmetic object (like SmallInteger, Float, etc.).
ComparableMeasurement, also an abstract class, provides shared
protocol and implementation to its subclasses regarding
comparison messages (i.e. <,>,<=,>=). The Measurement class is
the one used to represent measurements throughout its instances,
such as “1 meter” or “100 dollars”. The NullMeasurement class
is used to solve the “zero problem” (See section 3.7) and it
implements the Singleton design patterns [6] and Null Object
[15]. Finally the MeasurementBag class is used to represent

measurement sets of different measurement dimensions. This class
plays an important role in the financial domain to represent multi-
financial instrument account balances, where a client can have
investments of different currencies or securities like “100 dollars
+ 200 euros”. The Number class was extended to provide the
messages #amount and #unit to be polymorphic with
Measurement.

Figure 6 shows a simplified class hierarchy diagram for units.
Modeling the units was not as simple as it seemed at first.
Initially, we had to solve the problem where each measurement
dimension (e.g. “Length”) had several units related to each other,
creating a transitive relationship between them. To solve this
problem, we decided to create a “base” or “canonical” unit to
which all the other units could convert to (see [13]). Base units in
our model are instances of the BaseUnit class while related (or

����������	
�������

+ anArithmeticObject
- anArithmeticObject
* anArithmeticObject
/ anArithmeticObject
= anObject

��������������������	

>
<
>=
<=

����������	

amount
unit

�������������	

amount
unit [^NullUnit new]

����������	��

measurements

Figure 5: Measurement class diagram

Arithmetic Protocol – It expects as
parameter any object that knows how
to respond to arithmetic messages, not
only numbers

Magnitude
Protocol

Its measurements are
not automatically
converted

������
amount [^self]
unit [^NullUnit new]

derived) units are instances of ProportionalDerivedUnit or
NonProportionalDerivedUnit. Figure 7 shows a code example of
how to create units for the “Length” dimension.

meter := BaseUnit named: ‘meter’.

centimeter := ProportionalDerivedUnit

 baseUnit: meter

 proportionalFactor: 1/100

 named: ‘centimeter’.

mile := ProportionalDerivedUnit

 baseUnit: meter

 proportionalFactor: 1609.344

 named: ‘mile’.

Figure 7: How Units are created
It was also necessary to model composed units to represent the
results of multiplication and division of measurements
(MultipliedUnit and DividedUnit respectively).

3.3 Equality
When we started using the first implementations we realized that
there are interchangeable measurements because they belong to
the same measurement dimension. For example, “1 dollar” and “4
quarters” represent the same thing from the arithmetic point of
view. We expect to get the same results when operating with
them. However, they are different entities in reality and, therefore,
different objects in the system.

It became essential to automatically convert related measurements
of the same dimension without the programmer's explicit
intervention. For example, it is expected for the system to return
“true” when comparing “1 meter” with “100 centimeters” (they
represent the same distance). To obtain this behavior the units are
declared by means of an equivalence relationship among them,
having a “base” unit to which all measurements of the same
dimension can be converted to, making it possible to compare
their quantities. The solution that we adopted models base units

and derived units, being among them convertible according to a
multiplication factor (for the case of proportional units like those
of distance) or according to a formula (as is the case of units of
temperature such as Kelvin, Celsius and Fahrenheit).

However, what was more important for us was the fact that we
realized that some entities in reality are representations of others.
For example, “100 centimeters” is a view, a representation of
another entity like “1 meter” (and vice versa). The model must
support this observation of reality, but not only that, the systems
should assure that two non-identical objects (that is, they are
objects at different memory locations) that represent the same
entity in reality are treated as equal. For example, two objects
representing the measurement “1 meter” represent the same
unique real entity “1 meter”, but as they are two objects that
occupy different memory locations the system has to return “true”
if they are compared via the equality protocol. It was therefore
fundamental to make measurements behave as “values”, name
commonly used to denominate objects that are immutable and that
can be the same beyond the area they occupy in memory (as for
example String, LargeInteger, etc. See [2]).

We concluded that there were non-identical objects that could be
equal, for example two objects “1 meter”, and at the same time
equal to other objects with no apparent relationship, except for the
equivalence given by the units, as “100 centimeters” or “0.001
kilometers.” Figure 8 shows a representation of this problem.

This problem also holds for comparison protocol such as <, >, <=,
>=, where measurements have to be converted to a common unit
before their amounts can be compared.

3.4 Numbers
Because we choose to treat numbers polymorphically with
measurements, their protocol was extended to respond to the
messages #amount and #unit. The message #amount was
implemented to return “self”, while #unit returns a null unit
(instance of NullUnit). This decision allowed us to simplify the

UnitBehavior

name
baseUnit
convertAmoutBaseUnit: aNumber
* aUnit
/ aUnit

BaseUnit

DerivedUnit

ProportionalDerivedUnit

factor

NonProportionalDerivedUnit

formula

NullUnit

CompoundUnit

MultipliedUnit

factors numerator

denominator

DividedUnit

Figure 6: Unit class diagram

implementation of certain methods when mixing numbers and
measurements (as comparison, adding, etc.). Not making this
decision would have forced the programmer to constantly verify if
the object to collaborate with was a number or a measurement.

Figure 8: Reality and its object model

3.5 Adding and Subtracting Measurements
To add and subtract measurement of the same dimension does not
imply any special challenge. The system must only check that it is
operating with the same units. If not, it must convert the
measurements to a common unit before adding or subtracting
them. Figure 9 shows some examples.

Figure 9: Adding measurement

Unfortunately, the same solution can not be adopted when adding
or subtracting measurements of different dimensions (like meter
and Kelvin) or not automatically convertible among them (like
dollars and euros whose conversion depends on the quoting
market, point in time, etc.). What should the system do under
these circumstances?
One option would be to raise an exception indicating that an
incorrect operation was performed. Some research work proposes
this solution and others even propose these type of “violations” to
be detected at compile time like [1] and [12]. However, we took a
totally different approach creating for this case an object that
represents a result for this operation.
These objects are instances of MeasurementBag, which are
polymorphic with any measurement or number from the
arithmetic point of view, but not from the comparison one.
This design decision allows the model to handle cases where some
measurements “look” invalid at a certain point in time, when
evaluating arithmetic expressions which become valid later on.
But more important, it is the fact that there are some units of the

same dimension that do not relate to each other directly, but only
through a contextual or temporal relationship. Examples of these
are the “currencies”, which are used to measure “amount of
wealth”, where their relationship is not constant but it rather
varies according to the market where they are quoted, a date, a
financial operation, etc.
Thanks to this abstraction, a group of measurements of wealth can
be valued in another wealth unit, using financial scenarios to
convert them. Figure 10 shows how to value a financial balance
that contains dollars and euros in another currency like the
Argentinean peso, where “1 dollar” is equal to “3 pesos” and “1
dollar” is equal to “1.4 euros”.
newYorkExchangeMarketScenario

 quoteFor: 1 dollar is: 3 pesos.

newYorkExchangeMarketScenario

 quoteFor: 1 dollar is: 1.4 euros.

accountBalance := 100 dollars + 200 euros.

accountBalanceInPesos :=

 newYorkExchangeMarketScenario

 convert: accountBalance to: peso.

accountBalanceInPesos := 1140 pesos.

Figure 10: Converting a MeasurementBag to a Measurement

3.6 Multiplication and Division of
Measurements
To multiply or divide a measurement by a number implies to
multiply or divide the amount of the measurement with the
corresponding number.
To multiply measurements we decided to create measurements
whose amount is the result of the multiplication of the amounts of
the factors, and the unit is a compound unit instance of
MultipliedUnit, whose factors are the units of the multiplied
measurements.
When dividing measurements, the system creates a measurement
whose amount is the result of dividing the amounts of each
measurement and the unit is an instance of DividedUnit whose
numerator is the unit of the measurement to divide and
denominator is the unit of the dividend measurement.
When multiplying or dividing measurements, the model takes care
of simplifying the units when necessary. In the same way, if a
measurement bag is multiplied or divided by a measurement, the
model applies the distributive property of the arithmetic operator
directly.
For example, a velocity measurement of “45 miles per hour” is
represented with an instance of Measurement whose amount is
45, and its unit is instance of DividedUnit, being its numerator
the unit “mile” and its denominator the unit “hour”. If we wanted
to know the final velocity of applying an acceleration of 600
miles/ hour� (that is 600 miles/(1 hour*1 hour)) during 30
seconds, we should only evaluate the uniform rectilinear
movement physical formula, and as one can see in Figure 11 the
system would give us 50 miles per hour as result.

1 meter

100 cm

0.001km

1 meter

1 meter

100 cm

0.001km

Object model Reality

Represents the entity
Equals to

distance := 1 meter + 50 centimeters.

distance := 3/2 meter.

distance := 100 centimeters + 50 centimeters.

distance := 150 centimeters

finalVelocity := (45 miles/1 hour) +

 ((600 miles/(1 hour * 1 hour)) *

 30 seconds).

finalVelocity:= (45 miles/hour) +

 ((600 miles/(1 hour * 1 hour)) *

 (1/120) hour).

finalVelocity:= (45 miles/hour) +

 (600 miles/1 hour * 1/120 hour).

finalVelocity:= (45 miles/hour) +

 (600/120 miles/hour).

finalVelocity:= 45 miles/hour + 5 miles/hour.

finalVelocity:= 50 miles/hour.

Figure 11: Getting the final velocity

3.7 The Zero Problem
One of the biggest problems we faced was how to treat
measurements that represent the absence of what they are
measuring, that is, “nothing”.
It is natural to say that “0 meters” is equal to “0 centimeters”, they
both mean “nothing” in the distance dimension, but what should
happen when comparing “0 meters” with “0 dollars”, should the
system respond that they are equal or different?, even more, what
should happen if “0 meters” is compared with the number 0?
At first, our intuition leads us to believe that “0 meters” should
not be equal to “0 dollars” (apparently they are measurements in
different dimensions), and therefore, also not equal to the number
0. However, when we analyze the problem in detail, we reach to
the conclusion that in all these cases we are dealing with different
representations of “nothing”, with the absence of what is being
measured or counting, and one representation of “nothing” cannot
be different from another one. For this reason, “0 meters” and “0
dollars”, both representing “nothing” at the same time, must be
equal, and they must be equal to 0 because it also represents
“nothing”.
This seems an anti-natural design decision, but we confirmed its
correctness after studying, in greater detail, the meaning of
measurement, that according to the NIST (National Institute of
Standards and Technology) is defined as “The value of a quantity1
is its magnitude expressed as the product of a number and a unit,
and the number multiplying the unit is the numerical value of the
quantity expressed in that unit.” [13]. Therefore, if the value of
the measurement’s amount is 0, the result of multiplying it by its
unit will always be 0.
We must also mention that 0 is not always the amount that
represents the absence of what it is being measured. For example,
in the case of temperature measurements, “0 Celsius degrees” is
not equal to “0 Kelvin degrees”, being “0 Kelvin degrees” the
absence of temperature. This intriguing characteristic of 0 is also
explained in [1] and [12].

3.8 Measurement Comparison
When measurements of the same dimension are compared, the
system has to convert them to a common unit before comparing
their amounts. On the other hand, when comparing measurements

1 Quantity refers to what we call measurement

not automatically convertible between each other, like “100
dollars < 100 euros”, the same solution cannot be adopted.
Contrary to the behavior chosen in the case of adding and
subtracting non-convertible measurements, when comparing non
automatically-convertible measurements we raise an exception
indicating the impossibility of comparing them under these
circumstances. The cause of the exception is that the measurement
on the right side of the comparison cannot be converted to the unit
of the measurement on the left side of it. However this exception
has the characteristic of being “resumable”, allowing the
programmer to provide a suitable conversion for the
measurements, letting the system continue with the normal flow of
execution.

4. IMPLEMENTATION
To achieve the goals pursued, it was fundamental to extend the
arithmetic operations offered by the programming language,
making it possible to operate with numbers and measurements,
that is, to treat them polymorphically regarding the arithmetic
protocol.
Achieving these goals using statically typed languages implies
that the measurements should have a common interface with the
numbers (if the language offers interfaces) or to subclass a
common class making it possible to define variables of that type
to avoid type errors when compiling. Because of our experience
with statically typed languages, we knew from the very beginning
that this transparency objective would be impossible to achieve
without modifying the number model offered by the programming
language.
This can not be done with the current Java implementation
because numbers are not objects, they are data types and their
behavior is hardcoded in the virtual machine. On the other hand,
it is not possible to define messages for arithmetic operators like
+, *, etc., having to create a brand new arithmetic protocol loosing
the desired transparency. The class wrappers, like Integer or Long,
could be used to avoid the data type restriction, but none of them
implement arithmetic messages, restricting us again to implement
this model transparently.
Although .Net offers the possibility of overloading operators, it is
not possible to extend the number’s behavior (for example, to
make them respond messages such as #amount and #unit), making
it impossible to treat them polymorphically with measurements.
We should mention that we did not explore the possibility of
implementing this model with parameterize classes. We did not
spend time thinking about this solution because the
implementation we achieved using Smalltalk was simple and
straightforward.
Using a dynamically typed programming language like Smalltalk
to implement this model allowed us to avoid the limitations found
with statically typed languages. Not only there are no restriction
on the arithmetic operation result’s type, but Smalltalk is also
prepared to collaborate with other type of objects when evaluating
arithmetic expressions.
Due to the dynamic typing Smalltalk’s characteristic, the only
requirement for objects that collaborate among them is to answer
to the messages they receive; that is why it is feasible to make a
number collaborate with a measurement, as long as the
measurements responds to messages like +, -, * and /.

Figure 12 shows the message * (multiplication) implementation
for the SmallInteger class in Smalltalk. It’s worth noting that, if
the primitive used to multiply the number fails, it delegates to the
object received as parameter the responsibility to solve that
message. In the case of multiplying a number by a measurement,
the primitive will fail because the Smalltalk VM does not know
how to multiply a number by a measurement and it will send the
message * to the measurement with the corresponding number as
parameter. It is now the Measurement’s method the one that
knows how to carry out this operation, and using the double
dispatch technique (see [8] and [11]) it finally returns the result of
multiplying a measurement by a scalar.
* aNumber

 “Try to multiply using the VM”

 <primitive: VMprSmallIntegerMultiply>

 “If aNumber is an instance of an unexpected
class, delegate the responsibility of multiply
this number to that object”

 self primitiveErrorCode = PrimErrInvalidClass

 ifTrue: [^aNumber * self].

 ^self primitiveFailed

Figure 12: Implementation of * in SmallInteger
The implementation of this model showed us the importance of
the programming language being used. If the programming
language adheres to the stipulated principles in [10], extending its
behavior will be simple and straightforward, without needing to
modify base classes or lower lever components like the compiler
or VM. The transparency and uniformity objectives were
completely achieved with Smalltalk, without modifying a single
line of code, adding a single keyword nor modifying its syntax.
The behavior of basic objects like numbers was extended showing
the beauty and simplicity of Smalltalk’s design, reinforcing the
need for open and extensible language implementations, that
allow programmers to add any type of new behavior not
considered during the language design phase.

5. RESULTS
5.1 Concrete Benefits
We have obtained many benefits from using this model to develop
financial software. All of them come from the fact of treating
uniformly “different ways of measuring or representing the same
thing”. In the next paragraph we highlight some concrete benefits
we obtained while solving recurrent financial software problems.

5.1.1 Quotes
Financial instruments are quoted in different markets and in
different currencies. It is normal to mathematically operate quotes
for the same instrument expressed in different currencies, without
noticing that they were incorrectly mixed.
Using measurements to model quotes allows the programmer to
write code without validating that he or she is using the correct
currencies, and without having to make explicit conversions when
needed. The measurements model takes care of these validations
and conversions automatically.

5.1.2 Nominal and Residuals quantities
When trading bonds, the trade’s quantity can be expressed in
nominals or residuals. A quantity expressed as nominal refers to
the “concrete amount of bonds”. A quantity expressed in residuals
indicates the amount with respect to the amortization percentage
that the bond issuer still has to pay.
Therefore, it is normal to talk about “1 NOMINAL BOND” or
“0.5 RESIDUAL BOND”, where both quantities represent the
same concrete amount of BONDs, they are equivalent. For this
example, the issuer still has to pay a 50% of the capital the buyer
has lent him.
Modeling nominal quantities and residual quantities as related and
automatically convertible units let the programmer avoid the
verifications and conversions he or she should write when dealing
with bond quantities, delegating that task to the measurements
model.

5.1.3 Clean Price/Dirty Price
The same way a bond’s quantity can be expressed as nominal or
residual, a bond’s price can be expressed as clean (that means,
without including the accrued interests) or dirty (that is, including
the accrued interests). The combination of these possibilities gives
us four totally different ways to quote a bond’s price.
Using measurements to represent bond prices where their units are
related and automatically converted, relieves the programmer
from this complex situation, being the objects the ones that take
care of converting themselves.

5.1.4 Other Models based on Measurements
We have designed and implemented other models using
measurements. One of them is a completely new set of classes that
model the time domain (such as years, dates, months, etc.) in a
simpler and more powerful way than the Smalltalk
implementation.
For example, representing a date as a measure of time at year 0,
for instance, simplified the comparison and arithmetic operations
that could be performed on dates, like going forward “3 days” or
going backwards “2 weeks”.
We feel we achieved a simple and uniform design, due in great
amount, to the use of measurements, to such an extent that we
completely replaced the Smalltalk classes provided for this
problem, like Date, Time, etc., with ours. Discussing the benefits
of this model would imply another report. With this model it is
easy to create financial magnitudes taking into account their
dynamic dimension (that is, relative to time).

5.2 Lessons Learned
5.2.1 Immutable Objects
Having implemented the measurements model using immutable
objects when appropriate, simplified its design and
implementation. Not only they do provide the benefits mentioned
in [2] but they also avoid non-contemplated consistency problems
that could appear during an object’s life cycle.
Immutable objects that are valid from the time they are created
assure the programmer that she is not dealing with invalid ones,
because an object is not instantiated if its preconditions do not
hold.

5.2.2 Development Technique
We cannot end this paper without mentioning the advantages we
got due to the use of the “Test Driven Development” technique.
(See [3] and [4]).
Each observation we made on the problem domain about how to
mathematically operate with measurements was programmed as
tests that we took as the starting point to implement and create a
better model.
It is necessary to highlight again the facilities that a dynamically
typed and late binding programming language offers when using
this technique. It is because of the dynamically typed
characteristic of the language that we could make our model
evolve smoothly due to not having to rename or refactor the
variables type. The late binding characteristic allowed us to
“program on the fly”, that is, directly within the debugger, a
characteristic still restricted in languages like Java or C#.

5.3 Related Work
Griggs has an implementation of measurements for VisualWorks
[14], but the model needs special classes for temperature
measurements, it does not allow measurement bags and it is
mainly oriented to physical measurements.
Allen et.al. presented [1], where they proposed units to be part of
the type system, allowing statically typed languages to check unit
errors. Although they generate an Abelian group allowing
algebraic operations on it, it does not support measurement bags
and it uses an extension to Java called MixGen, where generic
types are first-class.
Kennedy, [12] based his Ph.D. thesis on this issue, but he also
proposes the units to be part of the type system in statically typed
languages. There is no implementation of his work in object
oriented languages.
In [5], Martin Fowler analyzed this problem but we needed and
implemented a more general model.
There was a proposal to add units to the Java Programming
Language (JSR 108, See [9]), but in contrast to our job, they just
model units not measurements, loosing what we think is the most
powerful feature of our model, to do arithmetic operations with
measurements. Also, this work only deals with physical units.
In [4], Kent Beck proposed the use of Money and MoneyBag to
solve the multi-currency problem. We go one step further
generalizing all financial quantities to measurements, providing a
uniform solution to financial systems.

6. CONCLUSION
To evaluate arithmetic operations not only with numbers but also
with measurements allows the programmer to delegate to the
system a cumbersome and error prone task, lowering the error rate
produced by the execution of arithmetic operations with numbers
that represent quantities of different units.
In financial systems, where one of the main objectives is to
account (to measure) for how many of any possible financial
instrument one owns, having a model with these characteristics is
fundamental because treating measurements as first class objects
simplifies the implementation of this kind of systems.
After completing this model, we realized that what we did was
just follow a well know Object-Oriented design practice which is

to always model Reality. That means that if a measurement exists
in reality, the model must have an object to represent it, not just a
number implicitly playing the role of a measurement. If Reality
has a measure of distance, there must be an object to represent it,
so if that measure is divided by a measurement of time, a new
measurement is created to represent the real entity named
“velocity”, and not just a number. We need the system, we need
its objects to know “the velocity” and not just a number implicitly
playing the role of velocity, whose meaning can only be
interpreted by a human.
We believe that a model such as this should be part of any
development environment, because as we could experience, it
solves a set of common and recurrent problems.

6.1 Future Work
There are some enhancements that can be made to this model,
such as:
1) To reify the measurement dimensions. Currently, there are no
classes to represent measurement dimensions such as “distance”,
“force”, “capacity”, “temperature”, etc.
2) We have not implemented any kind of functionality to allow
well know composed units to be named, such as Joule (equivalent
to m�*Kg*s��) or Pascal (equivalent to m��*Kg*s��).
3) To have units understand some messages to facilitate the
creation of exponential units, such as “meter pow: 2” to represent
m� (square meter).
4) To restrict the amount of some measurements to be a valid one,
for example, measurements whose amounts must be a whole
number.

7. ACKNOWLEDGMENTS
We would like to thank the Mercap’s Software Development
Team, for their comments and use of the measurement model.
Thanks to the Object Group of the Exact Sciences School at the
University of Buenos Aires. Also, we like to thank Michael
Maximilien of the IBM Almaden Research Center for his review
and friendship.

8. REFERENCES
[1] Allen, E., Chase, D., Luchangco, V., Maessen, J. and Steele,

G. Object-Oriented Units of Measurement. Technical Report,
OOPSLA 2004.

[2] Baümer, D., Riehle, D., Siberski, W., Lilienthal, C., Mergert,
D.,Sylla, K. and Züllighoven, H. Values In Objects Systems.
UBILAB Thecnical Report, 1998-10-10, Zurich, Switzerland

[3] Beck, K. Extreme Programming Explained: Embrace
Change. Addison-Wesley, Reading, MA, 1999

[4] Beck, K. Test Driven Development: By Example. Addison-
Wesley, Reading, MA, 2002

[5] Fowler, M. Analysis Patterns: Reusable Object Models.
Addison-Wesley, Reading, MA, 1996

[6] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of ReusableObject-Oriented Software.
Addison-Wesley, 1995.

[7] Goldberg, A. and Robson, D. Smalltalk-80: The Language
and its Implementation. Addison-Wesley, Reading, MA,
1983.

[8] Hebel, K., Johnson, R.. Arithmetic and Double Dispatching
in Smalltalk-80. University of Illinois at Urbana-Champaign.

[9] Java Extension proposal JSR 108, Source Code at http://jsr-
108.sourceforge.net/javadoc/javax/units/Unit.html Extension
proposal at http://www.jcp.org/en/jsr/detail?id=108

[10] Ingalls, D. Design Principles Behind Smalltalk. BYTE
Magazine, August 1981. The McGraw-Hill Companies, Inc.,
New York, NY.

[11] Ingalls, D. A simple technique for handling multiple
polymorphism. ACM SIGPLAN Notices, 21(11):347--349,
Nov. 1986

[12] Kennedy, Andrew J. Programming Languages and
Dimensions. PhD Thesis, University of Cambridge.
Published as Technical Report No. 391, University of
Cambridge Computer Laboratory, April 1996

[13] Taylor, Barry. Guide for the Use of the International System
of Units. National Institute of Standards and Technology,
Reading, Aplil 1995

[14] Travis Griggs, VisualWorks public repository,
http://www.glorp.org/publicRepository/Measurements.html,
2004

[15] Woolf, B. The Null Object Pattern. in Pattern Languages of
Program Design (R. Martin, F. Buschmann, and D. Riehle,
eds.), Reading, Massachusetts, Addison-Wesley, 1997.

	

