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ABSTRACT 
In physics, like in other sciences, formulas are specified using 
explicit measurements, that is, a number with its unit. The first 
step to determine the validity of a physics formula’s evaluation is 
to verify that the unit of the result corresponds with the 
prospective unit. In software development, physics, financial and 
other sciences formulas are programmed using mathematical 
expressions based only on numbers, being the units of these 
numbers implicitly given by the semantics of the program or 
assumed by the programmer's knowledge. Consequently, it is 
common that errors result from operating with values expressed in 
different units, e.g., dividing a quantity of years by a quantity of 
months, without obtaining any type of indication or objection to 
this error from the system. In this report, we discuss our 
experience designing and implementing a model that solves this 
problem reifying the concept of measurement, unit and their 
arithmetic. Our model relieves the programmer from the arduous 
task of verifying the validity of the arithmetic expressions 
regarding units, delegating that responsibility to the system, 
thereby, diminishing the errors introduced by the incorrect use of 
values expressed in different units. We also show that having 
implemented this model with a dynamically typed language 
simplified its programming and increased its reusability. 

Categories and Subject Descriptors 
D.2.13 [Software Engineering]: Reusable Software – Reuse 
Models. D.3.3 [Programming Languages]: Language Constructs 
and Features – Frameworks, Polymorphism. J.1 [Computer 
Applications]: Administrative Data Processing – Financial.  

General Terms 
Design, Reliability, Languages 

Keywords 
Measurements, Units, Arithmetic expressions, Dynamic typed, 
Smalltalk 

1. INTRODUCTION 
Mercap Software Corp., based in Buenos Aires, Argentina, 
develops financial systems. Therefore, it is essential to us the 

validity of the results obtained when applying financial formulas. 
For this reason, after struggling for several years with problems 
related to using formulas with incorrect parameters, we designed a 
model in which all arithmetic operations between measurements 
are automatically validated by the system when they are evaluated. 
This model is based on representing measurements as first class 
objects, that is, an object that encapsulates a number with its unit. 
This representation allows the programmer to use measurements 
in arithmetic expressions as if they were numbers, but with the 
advantage of providing explicit information to the system—
specifically, the measurement’s units. 

We see this model’s benefits analogous to the benefits that took 
place when programmers went from performing arithmetic 
operations using bytes in assembly language, where it was the 
programmer’s responsibility to verify carrying problems, among 
others, to use more abstract types like Integer, Double or Float, 
where the programming language took care of representation 
problems. The number abstraction relieved the programmer from 
all the validations and verifications that she had to explicitly do 
with an assembly language and delegated that responsibility to the 
system, achieving therefore, a smaller error rate when performing 
arithmetic operations. 

Using this measurement model and not only numbers to conduct 
arithmetic operations, we obtained greater results than the 
prospective ones in several aspects of the software construction 
process. Among them, we can name the sense of security that it 
creates for the programmer; the fact that it is the system and not 
she who must assure the result’s validity regarding the units, 
therefore, diminishing the error rate produced by the incorrect 
evaluation of formulas or financial functions.  If the programmer 
performs incorrect operations with measurements, then this error 
will not go unnoticed, and the system will inform it when 
evaluating a mathematical expression. 

Modeling measurements as "first class objects" would have helped 
to solve or prevent famous errors like the incorrect use of units in 
the Mars Climate Orbiter [1] or during the test of the Star Wars 
laser-beam missile defense experiment [12].  Additionally, such 
an approach also aids in solving less grandiloquent, although 
recurrent, costly and well known errors in the scope of financial 
systems development.   

The aim of this report is to briefly present the design and 
implementation of this model, and how it influences our current 
financial system development. We will discuss the main problems 
we faced when designing and implementing this model, and how 
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we solved them. We will also mention the advantages of using an 
Object-Oriented dynamically typed language to implement it.  

The remaining of this paper is organized as follows.  Section 2 
shows a motivating example of what can happen when performing 
operations with values of incorrect units. Section 3 talks about the 
design decisions that we had to make and presents our design. 
Section 4 comments on some implementation details. Section 5 
highlights the concrete benefits, learned lessons and related work. 
And finally, Section 6 presents our conclusions and future work. 

2. MOTIVATING EXAMPLE 
Financial systems use financial formulas to get data that affects 
everything from strategic corporate investment decisions to 
client’s interest and dividend payments. It is crucial to assure the 
data’s correctness in any current or future evaluation context, in a 
natural and encapsulated way. 

For example, Figure 1 shows the formula that should be applied to 
calculate the result of carrying out a simple investment with a 
fixed interest rate (all code examples are given in Smalltalk). 

finalCapital := initialCapital * (1 + 
                (interestRate * investmentTime)) 

Figure 1: Simple investment formula 
This formula implicitly specifies each variable’s unit that 
composes it. The variable “initialCapital” is expected to be a 
money quantity. The variable “interestRate”, a percentage 
related to a unit of time and for “investmentTime”, a value that 
expresses a quantity of time is also expected, but that value can 
not be defined with any unit, it has to be the same unit of time that 
is used for “interestRate”. As we can see, this information is 
not explicitly given by the formula.  

A common decision in software development is to use objects that 
simply represent “numbers” for these variables, being the 
programmer’s responsibility to assure that the implicit 
information (i.e. units) of the numbers involved in arithmetic 
expressions is consistent with the expected result. For example, 
the programmer is the only one who knows that 
“initialCapital” represents a quantity of money. The system 
only requires of it to respond to the message “* anObject”, no 
assertions are made by the system regarding the unit’s correctness. 
This allows  incorrect values to be used when evaluating this 
financial formula without obtaining any type of objection from the 
system, although most surely getting one from the user.  

In this example of investment calculation, if the interest rate is 
expressed in annual terms and the variable “investmentTime” is 
expressed in terms of months, the expression will be 
arithmetically solved but the result obtained will be incorrect, 
since an amount expressed in terms of years has been mixed with 
one expressed in months without making any type of unit 
conversion. 

Figure 2 shows a code example that could be used in these type of 
systems. 

initialCapital := 100. 

interestRate := 0.1. 

investmentTime := 6. 

finalCapital := initialCapital * (1 +  

                (interestRate * investmentTime)).  

finalCapital := 100 * (1 + (0.1 * 6)). 

finalCapital := 160 

Figure 2: Investment formula evaluation 
The value of "finalCapital" will be 160 for this case instead of 
105, since the formula was calculated for an investment of 6 years 
instead of 6 months (or 0.5 years). 

One possible solution to this problem could be to ensure that all 
parameters of the formula are explicitly converted to the correct 
units (i.e. calling a function) before the formula is evaluated. The  
main problem with this approach is that the programmer has to 
make sure that all formulas in the system make use of this unit 
conversion code, which is both inefficient and error prone. 

A solution following the good Object-Oriented design practices 
would be to encapsulate this responsibility in objects. For 
example, if the objects used to evaluate this formula would have 
been measurements (as defined in our proposed model), not only 
the correct arithmetic would have been done by the system, but 
also it could assure the result’s validity regarding its unit. 
Evaluating the investment formula using an “interestRate” 
expressed in years with an “investmentTime” expressed in 
months would cause the system to convert these measurements (in 
this case from months to years) to obtain the right result.  

Figure 3 shows how this snippet code would be written using our 
model.  In this case, the objects used as variables in the formula 
are not solely numbers but a number with its unit. The variable 
“initialCapital” references to an object representing “100 
dollars” (obtained for readability reasons by sending the message 
“dollars” to the object representing the number 100). 

initialCapital := 100 dollars. 

interestRate := 0.1 / 1 year. 

investmentTime := 6 months. 

finalCapital := initialCapital * (1 +  

                (interestRate * investmentTime)). 

finalCapital := 100 dollars * (1 + (0.1 / 1 year *  

                6 months)). 

finalCapital := 105 dollars. 

Figure 3: Investment code using our measurement model 
The system not only converts the measurements to the correct unit 
to get the right result, but it also takes care of the simplification 
between the “investmentTime” and “interestRate” units, in 
such a way that it returns a measurement expressed as a quantity 
of money as it was expected. We can see in Figure 4 the system’s 
steps for the formula’s evaluation. 



fc := 100 dollars * (1 + (0.1/1 year * 6 month)). 

fc := 100 dollars * (1 + (0.1/1 year * 0.5 year)). 

fc := 100 dollars * (1 + (0.1/1 year * 0.5 year)). 

fc := 100 dollars * (1 + (0.1/1 * 0.5)). 

fc := 100 dollars * (1 + 0.05). 

fc := 100 dollars * 1.05. 

fc := 105 dollars. 

Figure 4: How the formula is evaluated 
As a result “finalCapital” is not just the number 105 (that is 
an instance of SmallInteger in the case of Smalltalk) but "105 
dollars", an instance of Measurement, the class that represents a 
measurement in our model. 

3. DESIGN 
There were a number of requirements that this model had to fulfill 
that influenced its design. They are presented in the following 
sections. 

 

3.1 Transparency and Uniformity 
Transparency and uniformity for the programmer when operating 
with numbers and measurements was the main objective that we 
intended to obtain when designing this model. We realized that to 
fulfill that objective, measurements and numbers should be 
polymorphic, regarding arithmetic protocol such as +, -, / and * 
(among others). This decision allowed us to have generic 
arithmetic expressions without caring if they were evaluated with 
numbers or measurements, as in the capital investment formula 
used as example (Figure 1) that can be evaluated with numbers or 
measurements.   

This design decision brings the advantage of not having to rewrite 
existing code nor to have to teach the programmers how to use the 
measurement model. 

3.2 Measurement and Units Design 
A simplified class hierarchy diagram for the measurement’s model 
is shown in figure 5. 

The abstract class MeasurementBehavior defines shared 
arithmetic protocol between measurements and any other 
arithmetic object (like SmallInteger, Float, etc.). 
ComparableMeasurement, also an abstract class, provides shared 
protocol and implementation to its subclasses regarding 
comparison messages (i.e. <,>,<=,>=). The Measurement class is 
the one used to represent measurements throughout its instances, 
such as “1 meter” or “100 dollars”. The NullMeasurement class 
is used to solve the “zero problem” (See section 3.7) and it 
implements the Singleton design patterns [6] and Null Object 
[15]. Finally the MeasurementBag class is used to represent 

measurement sets of different measurement dimensions. This class 
plays an important role in the financial domain to represent multi-
financial instrument account balances, where a client can have 
investments of different currencies or securities like “100 dollars 
+ 200 euros”. The Number class was extended to provide the 
messages #amount and #unit to be polymorphic with 
Measurement. 

Figure 6 shows a simplified class hierarchy diagram for units. 
Modeling the units was not as simple as it seemed at first.  
Initially, we had to solve the problem where each measurement 
dimension (e.g. “Length”) had several units related to each other, 
creating a transitive relationship between them. To solve this 
problem, we decided to create a “base” or “canonical” unit to 
which all the other units could convert to (see [13]).  Base units in 
our model are instances of the BaseUnit class while related (or 
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Figure 5: Measurement class diagram 
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amount  [ ^self ] 
unit       [ ^NullUnit new ] 



derived) units are instances of ProportionalDerivedUnit or 
NonProportionalDerivedUnit. Figure 7 shows a code example of 
how to create units for the “Length” dimension. 

meter := BaseUnit named: ‘meter’. 

centimeter := ProportionalDerivedUnit  

                baseUnit: meter 

                proportionalFactor: 1/100 

                named: ‘centimeter’. 

mile := ProportionalDerivedUnit  

                baseUnit: meter 

                proportionalFactor: 1609.344 

                named: ‘mile’. 

Figure 7: How Units are created 
It was also necessary to model composed units to represent the 
results of multiplication and division of measurements 
(MultipliedUnit and DividedUnit respectively).  

3.3 Equality 
When we started using the first implementations we realized that 
there are interchangeable measurements because they belong to 
the same measurement dimension. For example, “1 dollar” and “4 
quarters” represent the same thing from the arithmetic point of 
view. We expect to get the same results when operating with 
them. However, they are different entities in reality and, therefore, 
different objects in the system.    

It became essential to automatically convert related measurements 
of the same dimension without the programmer's explicit 
intervention. For example, it is expected for the system to return 
“true” when comparing “1 meter” with “100 centimeters” (they 
represent the same distance). To obtain this behavior the units are 
declared by means of an equivalence relationship among them, 
having a “base” unit to which all measurements of the same 
dimension can be converted to, making it possible to compare 
their quantities. The solution that we adopted models base units 

and derived units, being among them convertible according to a 
multiplication factor (for the case of proportional units like those 
of distance) or according to a formula (as is the case of units of 
temperature such as Kelvin, Celsius and Fahrenheit).   

However, what was more important for us was the fact that we 
realized that some entities in reality are representations of others. 
For example, “100 centimeters” is a view, a representation of 
another entity like “1 meter” (and vice versa). The model must 
support this observation of reality, but not only that, the systems 
should assure that two non-identical objects (that is, they are 
objects at different memory locations) that represent the same 
entity in reality are treated as equal. For example, two objects 
representing the measurement “1 meter” represent the same 
unique real entity “1 meter”, but as they are two objects that 
occupy different memory locations the system has to return “true” 
if they are compared via the equality protocol. It was therefore 
fundamental to make measurements behave as “values”, name 
commonly used to denominate objects that are immutable and that 
can be the same beyond the area they occupy in memory (as for 
example String, LargeInteger, etc. See [2]). 

We concluded that there were non-identical objects that could be 
equal, for example two objects “1 meter”, and at the same time 
equal to other objects with no apparent relationship, except for the 
equivalence given by the units, as “100 centimeters” or “0.001 
kilometers.” Figure 8 shows a representation of this problem. 

This problem also holds for comparison protocol such as <, >, <=, 
>=, where measurements have to be converted to a common unit 
before their amounts can be compared. 

3.4 Numbers 
Because we choose to treat numbers polymorphically with 
measurements, their protocol was extended to respond to the 
messages #amount and #unit. The message #amount was 
implemented to return “self”, while #unit returns a null unit 
(instance of NullUnit). This decision allowed us to simplify the 

UnitBehavior 

name 
baseUnit 
convertAmoutBaseUnit: aNumber 
* aUnit 
/ aUnit 

BaseUnit 

 

DerivedUnit 

 

ProportionalDerivedUnit 

factor 

NonProportionalDerivedUnit 

formula 

NullUnit 

 

CompoundUnit 

 

MultipliedUnit 

factors numerator 

denominator

DividedUnit 

Figure 6: Unit class diagram 



implementation of certain methods when mixing numbers and 
measurements (as comparison, adding, etc.). Not making this 
decision would have forced the programmer to constantly verify if 
the object to collaborate with was a number or a measurement.   

 
Figure 8: Reality and its object model 

3.5 Adding and Subtracting Measurements 
To add and subtract measurement of the same dimension does not 
imply any special challenge. The system must only check that it is 
operating with the same units. If not, it must convert the 
measurements to a common unit before adding or subtracting 
them. Figure 9 shows some examples. 

 
Figure 9: Adding measurement 

Unfortunately, the same solution can not be adopted when adding 
or subtracting measurements of different dimensions (like meter 
and Kelvin) or not automatically convertible among them (like 
dollars and euros whose conversion depends on the quoting 
market, point in time, etc.). What should the system do under 
these circumstances?  
One option would be to raise an exception indicating that an 
incorrect operation was performed. Some research work proposes 
this solution and others even propose these type of  “violations” to 
be detected at compile time like [1] and [12]. However, we took a 
totally different approach creating for this case an object that 
represents a result for this operation. 
These objects are instances of MeasurementBag, which are 
polymorphic with any measurement or number from the 
arithmetic point of view, but not from the comparison one. 
This design decision allows the model to handle cases where some 
measurements “look” invalid at a certain point in time, when 
evaluating arithmetic expressions which become valid later on. 
But more important, it is the fact that there are some units of the 

same dimension that do not relate to each other directly, but only 
through a contextual or temporal relationship. Examples of these 
are the “currencies”, which are used to measure “amount of 
wealth”, where their relationship is not constant but it rather 
varies according to the market where they are quoted, a date, a 
financial operation, etc. 
Thanks to this abstraction, a group of measurements of wealth can 
be valued in another wealth unit, using financial scenarios to 
convert them. Figure 10 shows how to value a financial balance 
that contains dollars and euros in another currency like the 
Argentinean peso, where “1 dollar” is equal to “3 pesos” and “1 
dollar” is equal to “1.4 euros”. 
newYorkExchangeMarketScenario  

   quoteFor: 1 dollar is: 3 pesos. 

newYorkExchangeMarketScenario  

   quoteFor: 1 dollar is: 1.4 euros. 

accountBalance := 100 dollars + 200 euros. 

accountBalanceInPesos :=  

   newYorkExchangeMarketScenario  

      convert: accountBalance to: peso. 

accountBalanceInPesos := 1140 pesos. 

Figure 10: Converting a MeasurementBag to a Measurement 

3.6 Multiplication and Division of 
Measurements 
To multiply or divide a measurement by a number implies to 
multiply or divide the amount of the measurement with the 
corresponding number.   
To multiply measurements we decided to create measurements 
whose amount is the result of the multiplication of the amounts of 
the factors, and the unit is a compound unit instance of 
MultipliedUnit, whose factors are the units of the multiplied 
measurements.   
When dividing measurements, the system creates a measurement 
whose amount is the result of dividing the amounts of each 
measurement and the unit is an instance of DividedUnit whose 
numerator is the unit of the measurement to divide and 
denominator is the unit of the dividend  measurement.    
When multiplying or dividing measurements, the model takes care 
of simplifying the units when necessary. In the same way, if a 
measurement bag is multiplied or divided by a measurement, the 
model applies the distributive property of the arithmetic operator 
directly.    
For example, a velocity measurement of “45 miles per hour” is 
represented with an instance of Measurement whose amount is 
45, and its unit is instance of DividedUnit, being its numerator 
the unit “mile” and its denominator the unit “hour”. If we wanted 
to know the final velocity of applying an acceleration of 600 
miles/ hour� (that is 600 miles/(1 hour*1 hour)) during 30 
seconds, we should only evaluate the uniform rectilinear 
movement physical formula, and as one can see in Figure 11 the 
system would give us 50 miles per hour as result. 

1 meter 

100 cm 

0.001km 

1 meter 

1 meter 

100 cm 

0.001km 

Object model Reality 

Represents the entity  
Equals to 

distance := 1 meter + 50 centimeters. 

distance := 3/2 meter. 

distance := 100 centimeters + 50 centimeters. 

distance := 150 centimeters 



finalVelocity := (45 miles/1 hour) +  

              ((600 miles/(1 hour * 1 hour)) * 

               30 seconds). 

finalVelocity:= (45 miles/hour) +  

              ((600 miles/(1 hour * 1 hour)) * 

               (1/120) hour). 

finalVelocity:= (45 miles/hour) +  

              (600 miles/1 hour * 1/120 hour). 

finalVelocity:= (45 miles/hour) +  

              (600/120 miles/hour). 

finalVelocity:= 45 miles/hour + 5 miles/hour. 

finalVelocity:= 50 miles/hour. 

 

Figure 11: Getting the final velocity 
 

3.7 The Zero Problem 
One of the biggest problems we faced was how to treat 
measurements that represent the absence of what they are 
measuring, that is, “nothing”. 
It is natural to say that “0 meters” is equal to “0 centimeters”, they 
both mean “nothing” in the distance dimension, but what should 
happen when comparing “0 meters” with “0 dollars”, should the 
system respond that they are equal or different?, even more, what 
should happen if “0 meters” is compared with the number 0? 
At first, our intuition leads us to believe that “0 meters” should 
not be equal to “0 dollars” (apparently they are measurements in 
different dimensions), and therefore, also not equal to the number 
0.  However, when we analyze the problem in detail, we reach to 
the conclusion that in all these cases we are dealing with different 
representations of “nothing”, with the absence of what is being 
measured or counting, and one representation of “nothing” cannot 
be different from another one. For this reason, “0 meters” and “0 
dollars”, both representing “nothing” at the same time, must be 
equal, and they must be equal to 0 because it also represents 
“nothing”. 
This seems an anti-natural design decision, but we confirmed its 
correctness after studying, in greater detail, the meaning of 
measurement, that according to the NIST (National Institute of 
Standards and Technology) is defined as “The value of a quantity1 
is its magnitude expressed as the product of a number and a unit, 
and the number multiplying the unit is the numerical value of the 
quantity expressed in that unit.” [13]. Therefore, if the value of 
the measurement’s amount is 0, the result of multiplying it by its 
unit will always be 0. 
We must also mention that 0 is not always the amount that 
represents the absence of what it is being measured. For example, 
in the case of temperature measurements, “0 Celsius degrees”  is 
not equal to “0 Kelvin degrees”, being “0 Kelvin degrees” the 
absence of temperature. This intriguing characteristic of 0 is also 
explained in [1] and [12].   

3.8 Measurement Comparison 
When measurements of the same dimension are compared, the 
system has to convert them to a common unit before comparing 
their amounts. On the other hand, when comparing measurements 

                                                                 
1 Quantity refers to what we call measurement  

not automatically convertible between each other, like “100 
dollars < 100 euros”, the same solution cannot be adopted. 
Contrary to the behavior chosen in the case of adding and 
subtracting non-convertible measurements, when comparing non 
automatically-convertible measurements we raise an exception 
indicating the impossibility of comparing them under these 
circumstances. The cause of the exception is that the measurement 
on the right side of the comparison cannot be converted to the unit 
of  the measurement on the left side of it. However this exception 
has the characteristic of being “resumable”, allowing the 
programmer to provide a suitable conversion for the 
measurements, letting the system continue with the normal flow of 
execution.    

4. IMPLEMENTATION 
To achieve the goals pursued, it was fundamental to extend the 
arithmetic operations offered by the programming language, 
making it possible to operate with numbers and measurements, 
that is, to treat them polymorphically regarding the arithmetic 
protocol. 
Achieving these goals using statically typed languages implies 
that the measurements should have a common interface with the 
numbers (if the language offers interfaces) or to subclass a 
common class making it possible to define variables of that type 
to avoid type errors when compiling. Because of our experience 
with statically typed languages, we knew from the very beginning 
that this transparency objective would be impossible to achieve 
without modifying the number model offered by the programming 
language.   
This can not be done with the current Java implementation 
because numbers are not objects, they are data types and their 
behavior is hardcoded in the virtual machine. On the other hand, 
it is not possible to define messages for arithmetic operators like 
+, *, etc., having to create a brand new arithmetic protocol loosing 
the desired transparency. The class wrappers, like Integer or Long, 
could be used to avoid the data type restriction, but none of them 
implement arithmetic messages, restricting us again to implement 
this model transparently. 
Although .Net offers the possibility of overloading operators, it is 
not possible to extend the number’s behavior (for example, to 
make them respond messages such as #amount and #unit), making 
it impossible to treat them polymorphically with measurements. 
We should mention that we did not explore the possibility of 
implementing this model with parameterize classes. We did not 
spend time thinking about this solution because the 
implementation we achieved using Smalltalk was simple and 
straightforward.   
Using a dynamically typed programming language like Smalltalk 
to implement this model allowed us to avoid the limitations found 
with statically typed languages. Not only there are no restriction 
on the arithmetic operation result’s type, but Smalltalk is also 
prepared to collaborate with other type of objects when evaluating 
arithmetic expressions. 
Due to the dynamic typing Smalltalk’s characteristic, the only 
requirement for objects that collaborate among them is to answer 
to the messages they receive; that is why it is feasible to make a 
number collaborate with a measurement, as long as the 
measurements responds to messages like +, -, * and /. 



Figure 12 shows the message * (multiplication) implementation 
for the SmallInteger class in Smalltalk. It’s worth noting that, if 
the primitive used to multiply the number fails, it delegates to the 
object received as parameter the responsibility to solve that 
message. In the case of multiplying a number by a measurement, 
the primitive will fail because the Smalltalk VM does not know 
how to multiply a number by a measurement and it will send the 
message * to the measurement with the corresponding number as 
parameter. It is now the Measurement’s method the one that 
knows how to carry out this operation, and using the double 
dispatch technique (see [8] and [11]) it finally returns the result of 
multiplying a measurement by a scalar. 
* aNumber 

  “Try to multiply using the VM” 

  <primitive: VMprSmallIntegerMultiply> 

 

  “If aNumber is an instance of an unexpected 
class, delegate the responsibility of multiply 
this number to that object” 

  self primitiveErrorCode = PrimErrInvalidClass 

    ifTrue: [^aNumber * self]. 

 

  ^self primitiveFailed 

Figure 12: Implementation of * in SmallInteger 
The implementation of this model showed us the importance of 
the programming language being used. If the programming 
language adheres to the stipulated principles in [10], extending its 
behavior will be simple and straightforward, without needing to 
modify base classes or lower lever components like the compiler 
or VM. The transparency and uniformity objectives were 
completely achieved with Smalltalk, without modifying a single 
line of code, adding a single keyword nor modifying its syntax. 
The behavior of basic objects like numbers was extended showing 
the beauty and simplicity of Smalltalk’s design, reinforcing the 
need for open and extensible language implementations, that 
allow programmers to add any type of new behavior not 
considered during the language design phase. 

5. RESULTS 
5.1 Concrete Benefits 
We have obtained many benefits from using this model to develop 
financial software. All of them come from the fact of treating 
uniformly “different ways of measuring or representing the same 
thing”. In the next paragraph we highlight some concrete benefits 
we obtained while solving recurrent financial software problems. 

5.1.1 Quotes 
Financial instruments are quoted in different markets and in 
different currencies. It is normal to mathematically operate quotes 
for the same instrument expressed in different currencies, without 
noticing that they were incorrectly mixed. 
Using measurements to model quotes allows the programmer to 
write code without validating that he or she is using the correct 
currencies, and without having to make explicit conversions when 
needed. The measurements model takes care of these validations 
and conversions automatically. 

5.1.2 Nominal and Residuals quantities 
When trading bonds, the trade’s quantity can be expressed in 
nominals or residuals. A quantity expressed as nominal refers to 
the “concrete amount of bonds”. A quantity expressed in residuals 
indicates the amount with respect to the amortization percentage 
that the bond issuer still has to pay.  
Therefore, it is normal to talk about “1 NOMINAL BOND” or 
“0.5 RESIDUAL BOND”, where both quantities represent the 
same concrete amount of BONDs, they are equivalent. For this 
example, the issuer still has to pay a 50% of the capital the buyer 
has lent him. 
Modeling nominal quantities and residual quantities as related and 
automatically convertible units let the programmer avoid the 
verifications and conversions he or she should write when dealing 
with bond quantities, delegating that task to the measurements 
model. 

5.1.3 Clean Price/Dirty Price 
The same way a bond’s quantity can be expressed as nominal or 
residual, a bond’s price can be expressed as clean (that means, 
without including the accrued interests) or dirty (that is, including  
the accrued interests). The combination of these possibilities gives 
us four totally different ways to quote a bond’s price. 
Using measurements to represent bond prices where their units are 
related and automatically converted, relieves the programmer 
from this complex situation, being the objects the ones that take 
care of converting themselves. 

5.1.4 Other Models based on Measurements 
We have designed and implemented other models using 
measurements. One of them is a completely new set of classes that 
model the time domain (such as years, dates, months, etc.) in a 
simpler and more powerful way than the Smalltalk 
implementation. 
For example, representing a date as a measure of time at year 0, 
for instance, simplified the comparison and arithmetic operations 
that could be performed on dates, like going forward “3 days” or 
going backwards “2 weeks”. 
We feel we achieved a simple and uniform design, due in great 
amount, to the use of measurements, to such an extent that we 
completely replaced the Smalltalk classes provided for this 
problem, like Date, Time, etc., with ours.  Discussing the benefits 
of this model would imply another report. With this model it is 
easy to create financial magnitudes taking into account  their 
dynamic dimension (that is, relative to time). 

5.2 Lessons Learned 
5.2.1 Immutable Objects 
Having implemented the measurements model using immutable 
objects when appropriate, simplified its design and 
implementation. Not only they do provide the benefits mentioned 
in [2] but they also avoid non-contemplated consistency problems 
that could appear during an object’s life cycle. 
Immutable objects that are valid from the time they are created 
assure the programmer that she is not dealing with invalid ones, 
because an object is not instantiated if its preconditions do not 
hold. 



5.2.2 Development Technique 
We cannot end this paper without mentioning the advantages we 
got due to the use of the “Test Driven Development” technique. 
(See [3] and [4]).  
Each observation we made on the problem domain about how to 
mathematically operate with measurements was programmed as 
tests that we took as the starting point to implement and create a 
better model. 
It is necessary to highlight again the facilities that a dynamically 
typed and late binding programming language offers when using 
this technique. It is because of the dynamically typed 
characteristic of the language that we could make our model 
evolve smoothly due to not having to rename or refactor the 
variables type. The late binding characteristic allowed us to 
“program on the fly”, that is, directly  within the debugger, a 
characteristic still restricted in languages like Java or C#. 

5.3 Related Work 
Griggs has an implementation of measurements for VisualWorks 
[14], but the model needs special classes for temperature 
measurements, it does not allow measurement bags and it is 
mainly oriented to physical measurements. 
Allen et.al. presented [1], where they proposed units to be part of 
the type system, allowing statically typed languages to check unit 
errors. Although they generate an Abelian group allowing 
algebraic operations on it, it does not support measurement bags 
and it uses an extension to Java called MixGen, where generic 
types are first-class. 
Kennedy, [12] based his Ph.D. thesis on this issue, but he also 
proposes the units to be part of the type system in statically typed 
languages. There is no implementation of his work in object 
oriented languages. 
In [5], Martin Fowler analyzed this problem but we needed and 
implemented a more general model. 
There was a proposal to add units to the Java Programming 
Language (JSR 108, See [9]), but in contrast to our job, they just 
model units not measurements, loosing what we think is the most 
powerful feature of our model, to do arithmetic operations with 
measurements. Also, this work only deals with physical units. 
In [4], Kent Beck proposed the use of Money and MoneyBag to 
solve the multi-currency problem. We go one step further 
generalizing all financial quantities to measurements, providing a 
uniform solution to financial systems. 

6. CONCLUSION 
To evaluate arithmetic operations not only with numbers but also 
with measurements allows the programmer to delegate to the 
system a cumbersome and error prone task, lowering the error rate 
produced by the execution of arithmetic operations with numbers 
that represent quantities of different units. 
In financial systems, where one of the main objectives is to 
account (to measure) for how many of any possible financial 
instrument one owns, having a model with these characteristics is 
fundamental because treating measurements as first class objects 
simplifies the implementation of this kind of systems. 
After completing this model, we realized that what we did was 
just follow a well know Object-Oriented design practice which is 

to always model Reality. That means that if a measurement exists 
in reality, the model must have an object to represent it, not just a 
number implicitly playing the role of a measurement. If Reality 
has a measure of distance, there must be an object to represent it, 
so if that measure is divided by a measurement of time, a new 
measurement is created to represent the real entity named 
“velocity”, and not just a number. We need the system, we need 
its objects to know “the velocity” and not just a number implicitly 
playing the role of velocity, whose meaning can only be 
interpreted by a human. 
We believe that a model such as this should be part of any 
development environment, because as we could experience, it 
solves a set of common and recurrent problems. 

6.1 Future Work 
There are some enhancements that can be made to this model, 
such as:  
1) To reify the measurement dimensions. Currently, there are no 
classes to represent measurement dimensions such as “distance”, 
“force”, “capacity”, “temperature”, etc.  
2) We have not implemented any kind of functionality to allow 
well know composed units to be named, such as Joule (equivalent 
to m�*Kg*s�� ) or Pascal (equivalent to m��*Kg*s��).  
3) To have units understand some messages to facilitate the 
creation of exponential units, such as “meter pow: 2” to represent 
m� (square meter).   
4) To restrict the amount of some measurements to be a valid one, 
for example, measurements whose amounts must be a whole 
number. 
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