
The Cuis-Smalltalk book
Work-In-Progress

Hilaire Fernandes with Ken Dickey & Juan Vuletich

This book is for Cuis-Smalltalk (5.0#4506), a free and modern implementa-
tion of the Smalltalk language and environment.

Copyright c© 2020 Hilaire Fernandes with Ken Dickey & Juan Vuletich
Thanks to David Lewis, Tommy Pettersson & Mauro Rizzi for the reviews
of the book.

Compilation : 23 January 2021

Documentation source: https://github.com/Cuis-Smalltalk/
TheCuisBook

The contents of this book are protected under Creative Commons
Attribution-ShareAlike 4.0 International.

You are free to:
Share – copy and redistribute the material in any medium or format
Adapt – remix, transform, and build upon the material for any purpose,
even commercially.

Under the following terms:
Attribution. You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner,
but not in any way that suggests the licensor endorses you or your use.
Share Alike. If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

Complete license: https://creativecommons.org/licenses/by-sa/4.0/
legalcode

https://github.com/Cuis-Smalltalk/TheCuisBook
https://github.com/Cuis-Smalltalk/TheCuisBook
https://creativecommons.org/licenses/by-sa/4.0/legalcode
https://creativecommons.org/licenses/by-sa/4.0/legalcode

i

Short Contents

Preface . 1

1 Smalltalk Philosophy . 4
2 The Message Way of Life . 16

3 Class, Model of Communicating Entities 30
4 The Collection Way of Life . 54

5 Control Flow Messaging . 75
6 Visual with Morph . 87

7 The Fundamentals of Morph . 107
8 Events . 133

9 Code Management . 140

10 Debug and Exception Handling . 156

11 Sharing Cuis . 167

A Documents Copyright . 173
B Summary of Syntax . 174

C The Exercises . 178

D Solutions of the Exercises . 180
E The Examples . 195

F The Figures . 197

G Conceptual index . 199

ii

Table of Contents

Preface . 1

1 Smalltalk Philosophy . 4
1.1 Historical Context . 4
1.2 Installing and configuring Cuis-Smalltalk . 6

1.2.1 Editing your preferences . 8
1.2.2 Fun with window placement . 8

1.3 Writing your first scripts . 9
1.3.1 Fun with numbers . 11

1.4 Spacewar! . 13

2 The Message Way of Life . 16
2.1 Communicating entities . 16
2.2 Message send definitions . 17
2.3 Message to string entities . 19
2.4 Messages to number entities . 20
2.5 A brief introduction to the system Browser . 22
2.6 Spacewar! models . 25

2.6.1 First classes . 25
2.6.2 Spacewar! package . 27
2.6.3 The Newtonian model . 28

3 Class, Model of Communicating Entities 30
3.1 Understanding Object Oriented Programming 30
3.2 Explore OOP from the Browser . 35
3.3 Cuis system classes . 39
3.4 Kernel-Numbers . 39
3.5 Kernel-Text . 45
3.6 Spacewar! States and Behaviors . 47

3.6.1 The game states . 47
3.6.2 Instance variables . 49
3.6.3 Behaviors . 49
3.6.4 Initializing . 52

4 The Collection Way of Life . 54
4.1 String – a particular collection . 54
4.2 Fun with variables . 57
4.3 Fun with collections . 58
4.4 Collections detailed . 66
4.5 SpaceWar! collections . 71

iii

4.5.1 Instantiate collections . 71
4.5.2 Collections in action . 72

5 Control Flow Messaging . 75
5.1 Syntactic elements . 75
5.2 Pseudo-variables . 75
5.3 Method syntax . 76
5.4 Block syntax . 77
5.5 Control flow with block and message . 79
5.6 Spacewar!’s methods . 82

5.6.1 Initializing the game play . 82
5.6.2 Space ship controls . 83
5.6.3 Collisions . 85

6 Visual with Morph . 87
6.1 Installing a Package . 88
6.2 Ellipse Morph . 88
6.3 Submorph . 90
6.4 A brief introduction to Inspectors . 92
6.5 Building your specialized Morph . 96
6.6 Spacewar! Morphs . 98

6.6.1 All Morphs . 98
6.6.2 The art of refactoring . 100

7 The Fundamentals of Morph 107
7.1 Going Vector . 107

7.1.1 A first example . 108
7.1.2 Morph you can move . 109
7.1.3 Filled morph . 110
7.1.4 Animated morph . 112
7.1.5 Morph in morph . 114

7.2 A Clock Morph . 115
7.3 Back to Spacewar! Morphs . 122

7.3.1 Central star . 122
7.3.2 Space ship . 124
7.3.3 Torpedo . 125
7.3.4 Drawing revisited . 127
7.3.5 Drawing simplified . 131
7.3.6 Collisions revisited . 131

iv

8 Events . 133
8.1 System Events . 133
8.2 Overall Mechanism . 134
8.3 Spacewar! Events . 135

8.3.1 Mouse event . 135
8.3.2 Keyboard event . 138

9 Code Management . 140
9.1 The Image . 140
9.2 The Change Log . 140
9.3 The Change Set . 142
9.4 The Package . 145
9.5 Daily Workflow . 151

9.5.1 Automate your image . 152

10 Debug and Exception Handling 156
10.1 Inspecting the Unexpected . 156
10.2 The Debugger . 158
10.3 Halt! . 163

11 Sharing Cuis . 167
11.1 Golden Rules of the Smalltalk Guild . 167
11.2 Refactoring to Improve Understanding . 168

Appendix A Documents Copyright 173

Appendix B Summary of Syntax 174

Appendix C The Exercises . 178

Appendix D Solutions of the Exercises 180
Preface . 180
Smallltalk Philosophy . 180
The Message Way of Life . 180
Class, model of Communicating Entities . 181
The Collection Way of Life . 183
Control Flow Messaging . 186
Visual with Morph . 187
The Fundamentals of Morph . 188
Events . 192
Code Management . 193

v

Appendix E The Examples . 195

Appendix F The Figures . 197

Appendix G Conceptual index 199

1

Preface

A language that doesn’t affect the way you think about program-
ming, is not worth knowing.

—Alan Perlis

Cuis-Smalltalk —in short, Cuis— is a portable environment for doing,
building and sharing software. Like any other tool, Cuis doesn’t require
having a particular mindset or following a particular process. However, Cuis
is built with a specific view on what software is, and what it means to build
software. As a consequence, Cuis is especially effective if these ideas resonate
with you and, at least occasionally, you let them guide your thoughts and
actions.

In this book, we will go along with you as you explore, discover and learn
about Cuis and Smalltalk.

We don’t assume knowledge of computer programming, but if you hap-
pen to have some experience with an Object Oriented or Functional language
you will recognize many concepts. If you don’t have any programming ex-
perience, or you have coded in an imperative, closer to the metal language,
such as C or Assembly, many of the ideas may be new.

In any case, especially during the first chapters, read this book and follow
the examples with an open mind. A new point of view on what software
development means will be an enriching experience. For us, programming is
a thoughtful process.

We understand software development as the activity of learning and doc-
umenting knowledge for ourselves and others to use, and also to be run on a
computer. The fact that a computer can execute the software and produce
useful solutions to some problem, is a consequence of the knowledge being
sound and relevant. Just making it work is not the important part!

These ideas, that will be developed further along in the book you are
reading, strongly shape Cuis and the experience of using it. Amongst their
most obvious consequences are a passion for reducing unneeded complexity,
while providing a complete, live software development experience.

This book is an introduction and invitation to explore Cuis. We hope
you will join us in this journey to use Cuis as a medium to express ideas and
thoughts, to build cool stuff, and to make Cuis ever better.

Preface 2

Figure 1: Cuis

To make your journey with this book more enjoyable, the Spacewar! 1

project is its recurring theme. It is distilled along the book in code examples,
exercises and dedicated chapters. At the end of the book, you will have
written a replica of this historic video game.

How to use the book
The reader can study Cuis-Smalltalk from two versions of the book:

• Online. With a web browser at the https://cuis-smalltalk.github.
io/TheCuisBook address. The book is structured in chapters and sec-
tions, displayed one at a time. It is a very flexible way to study the
book: you can open several chapters and appendices on different tabs
in your web browser. It requires you to be connected to the Internet,
though.

• Offline. It is a PDF version coming in one file you download and read
offline. It can be printed as a nice paper book. Its most recent build is
found at https://github.com/Cuis-Smalltalk/TheCuisBook.

The code examples in the online version can be directly copied and pasted
into Cuis-Smalltalk. This is why the assignment character “←” you see in
the developer Cuis-Smalltalk window is printed as “:=” in the online version
of the book. The same applies with the return character “↑” printed as “^”
in the online version.

1 https://en.wikipedia.org/wiki/Spacewar!

https://cuis-smalltalk.github.io/TheCuisBook
https://cuis-smalltalk.github.io/TheCuisBook
https://github.com/Cuis-Smalltalk/TheCuisBook
https://en.wikipedia.org/wiki/Spacewar!

Preface 3

In the offline PDF version, the code example are printed with the same
assignment and return characters as seen in the Cuis-Smalltalk windows.
Coping and pasting also work as expected.

The chapters come with many of examples. Some can be copied and
pasted in Cuis-Smalltalk, we encourage you to do this, and in the process
modify them to explore by yourself. Other examples are code extracts which
are not self sufficient to be executed as is; their purpose is to expose specific
facets of the Smalltalk language.

A typical example without a caption looks like:

100 factorial

The same example with a caption comes with a number, a legend and it
can be used as a reference elsewhere in the book:

100 factorial
⇒ 9332621544394415268169923885626670049071596826438162146859

29638952175999932299156089414639761565182862536979208272237582

51185210916864000000000000000000000000

Example 1: I am an example with a caption and result

There are also a lot of exercises. Most are very easy, their intent is to
give you an opportunity to apply what was learned just before. The solution
can be read in the appendix.

Exercises are easily identified, there are presented by the Cuis-Smalltalk
mascot: Cuis, a South American rodent!

� �
Search the Internet: How many versions of Smalltalk are there?
 	

Exercise 1: I am an example of an exercise

The solution of the exercises are presented in Appendix D [Solutions of
the Exercises], page 180.

Happy reading!

4

1 Smalltalk Philosophy

The computer is simply an instrument whose music is ideas.
—Alan Kay

Before getting into the details of how to use the Cuis-Smalltalk language
and tools to build software, we need to understand the point of view, as-
sumptions and intentions that shape how Cuis-Smalltalk is meant to be used.
We can call this the Smalltalk philosophy of programming.

1.1 Historical Context
One major idea in software is that programming is merely giving a computer
a set of instructions to solve some problem. In this point of view, the only
value of software is to achieve a result, and therefore, a piece of software
is only as interesting as having that problem solved. Furthermore, as pro-
gramming is not interesting by itself, it is left to a professional guild with a
specialized technical knowledge of how to write software, and the rest of the
world just ignores it.

Our focus is on one thread in the history of powerful ideas which give a
different lens through which to explore software development. The historical
development of these ideas differs from the just solve a problem view. We
think this is worth revisiting.

The first clear vision of an automated information processor to augment
our collective memory, to find and share knowledge – indeed to transform the
data explosion into an information explosion, and then into a knowledge and
understanding explosion – was called Memex and described in the Vannevar
Bush essay “As We May Think” in 19451. Bush’s description of the possi-
bility of developing a Memex processing system to help individuals access,
evolve and capture knowledge for our collective benefit inspired many later
thinkers and inventors in the development of personal computers, networks,
hypertext, search engines, and knowledge repositories such as Wikipedia2.

As computational machinery evolved from large, single program at a time
mainframes, into timesharing mainframes, and into minicomputers, another

1 https://en.wikipedia.org/wiki/As_We_May_Think
2 Notable early milestones in this line of development were Ivan Sutherland’s Sketch-

pad (1963), the RAND tablet (1964), and Doug Engelbart’s NLS ("oN-Line System")
(1968). Later developments include Ted Nelson’s Xanadu, the Apple Macintosh, the
World Wide Web, smartphones and tablet computers.

https://en.wikipedia.org/wiki/As_We_May_Think

Chapter 1: Smalltalk Philosophy 5

area of insight was developing with models of how humans learn3. People
began to talk of human-computer symbiosis. Alan Kay conceived the idea
that computer software and computer programming could become a new
medium for expressing thoughts and knowledge. The ability to express ideas
in this new medium would be the new literacy. Every person should learn to
read and write in this new digital medium, and would have available their
own dynamic book, a Dynabook45 to accomplish this.

Very readable accounts of historic developments are Alan Kay’s papers
“The Early History of Smalltalk”6 and “What is a Dynabook?”7 in which
he notes The best way to predict the future is to invent it. Realizing the
Dynabook vision required significant advances and mutually supporting de-
velopment of hardware and software. The original development took place at
the Xerox PARC research center in the 1970’s. The first interim Dynabook
hardware was the Xerox Alto, generally considered the first personal com-
puter. The software system was Smalltalk. The design of both was guided
by the objectives of making Personal Dynamic Media and the Dynabook
real. The final version of Smalltalk built at Xerox was Smalltalk-80.

Given the relatively weak capabilities of computer hardware at that time,
implementing this vision presented real challenges, and much creativity was
called for. Today, smartphones, tablets and laptops do have the hardware
capabilities a Dynabook requires. However, the same advance hasn’t hap-
pened for the medium of personal software.

In 1981 Dan Ingalls, one of the early Smalltalk inventors, wrote in his
article “Design Principles Behind Smalltalk”8 a number of principles that
still guide us today. Among these:

Personal Mastery. If a system is to serve the creative spirit, it must
be entirely comprehensible to a single individual.

Reactive Principle. Every component accessible to the user should
be able to present itself in a meaningful way for observation and
manipulation.

With the commercialization of software, the trend has been to give people
“shrink wrapped” applications which are sealed off and written by profes-
sional software developers. One may customize an application by changing
“user settings”, but there is no way to see into or change deep capabilities.

3 Early notables here are J. Piaget, J. Brunner, O. K. Moore, and S. Papert.
4 “A personal computer for children of all ages”(1972) http://www.vpri.org/pdf/

hc_pers_comp_for_children.pdf
5 “Personal Dynamic Media”(1977) http://www.vpri.org/pdf/m1977001_dynamedia.
pdf

6 http://worrydream.com/EarlyHistoryOfSmalltalk
7 http://www.vpri.org/pdf/hc_what_Is_a_dynabook.pdf
8 http://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html

http://www.vpri.org/pdf/hc_pers_comp_for_children.pdf
http://www.vpri.org/pdf/hc_pers_comp_for_children.pdf
http://www.vpri.org/pdf/m1977001_dynamedia.pdf
http://www.vpri.org/pdf/m1977001_dynamedia.pdf
http://worrydream.com/EarlyHistoryOfSmalltalk
http://www.vpri.org/pdf/hc_what_Is_a_dynabook.pdf
http://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html

Chapter 1: Smalltalk Philosophy 6

In keeping with the ideal of personal media literacy, we believe that ev-
eryone should have full access to the software that runs our systems. Under-
standing and exploring computer systems requires writing software in ways
that can be read and shared.

The thinking change in problem solving can shift fromWhat can I do here
with what I am presented? to asking What tools do I need to be successful
here? and then building them to be ever more successful.

This way of thinking about software systems is important to us.

For this reason, Cuis is a kernel Smalltalk system which is still rather
close to Smalltalk-80. The Cuis-Smalltalk goal is to be a small, coherent
Smalltalk development environment that, with study, is comprehensible to
a single person.

As we experiment with and evolve Cuis, this goal is carried out by re-
moving everything possible from the base system which is not essential, and
by having a composition strategy which allows one to write or add any fea-
tures as needed. As one gains understanding of the software kernel or core,
one only has to read and learn from each additional feature at a time to
understand the whole.

Modern, open software environments are highly complex. Cuis is an
attempt to remain oriented and able to discover patterns without being lost
in a large wealth of possibilities which one does not completely grasp.

It is said that one understands the world by building it. Developing
fluency and depth in a new medium takes time and practice.

We invite you to become fluent and look forward to sharing with us what
you have built.

First, however, we must start with some of the mechanics.

As the saying goes “A journey of a thousand miles begins with a single
step”9.

Let’s step forward together.

1.2 Installing and configuring Cuis-Smalltalk
Cuis-Smalltalk is an environment and a programming language executed
on an idealized virtual computer. It is based on two major components:
the Smalltalk virtual machine conceptualizing this virtual computer and an
image representing the state of this computer.

The virtual machine is an executable program running on a dedicated host
(GNU/Linux, Mac OS X, Windows, etc.). It is called the Open Smalltalk
Virtual Machine, or Squeak VM in short. There are different flavors of

9 https://en.wikipedia.org/wiki/A_journey_of_a_thousand_miles_begins_with_a_single_step

https://en.wikipedia.org/wiki/A_journey_of_a_thousand_miles_begins_with_a_single_step

Chapter 1: Smalltalk Philosophy 7

VM, for various combinations of Operating System and CPU architecture.
Therefore, one VM compiled for Windows on Intel architecture will not work
in Linux on ARM architecture. You need the specific VM compiled for the
combination of Operating System and CPU architecture your computer is
based on.

The image is a regular file feeding the VM with all the objects defining the
state of the virtual computer. These objects are classes, methods, instances
of those classes as numbers, strings, windows, debuggers – whatever existed
when the state of the virtual computer was saved. An image file saved
on a given Operating System and CPU architecture will run identically on
another system requiring only a compatible VM to be used.

The VM allows an image to be restarted with windows in the same loca-
tions between different operating systems and different CPU architectures
without recompilation. This is what portability means to us.

What makes Cuis-Smalltalk special is the living entities in the image: its
class population and arrangement, how the classes inherit from each other.
The class count is typically less than 600.

To get you started easily, we encourage you to install Cuis-University10.
Here you will find bundles for GNU/Linux, Mac OS X and Windows on Intel
architecture. These bundles come with the dedicated VM and a recent image
of Cuis-Smalltalk; as well packages ready to be installed to make your life
easier when you experience the examples and exercises of the book. By the
time you read this book, Cuis-Smalltalk will likely have evolved to have a
newer version. What you learn here should, however, be easily transferable.

To get Cuis-Smalltalk running on your computer, extract the bundle and
execute the run script on Windows/Linux – run.bat or run.sh – on OS X
launch the Squeak application. Once you get Cuis-Smalltalk running, read
the information displayed on the windows. When you are done, you can
close these windows and adjust Cuis-Smalltalk to your preferences.

The Cuis University distribution should work for most common plat-
forms, but there are always more platform variants than we can test for. If
you have a problem, here are two sources of information. If you do not have
a problem, you can ignore these for now.

• Current installation instructions at the GitHub Cuis Repository:
https://github.com/Cuis-Smalltalk/Cuis-Smalltalk-Dev#
setting-up-cuis-in-your-machine

• Ask us on the Cuis email group https://lists.cuis.st/mailman/
listinfo/cuis-dev

10 https://sites.google.com/view/cuis-university/descargas

https://sites.google.com/view/cuis-university/descargas
https://github.com/Cuis-Smalltalk/Cuis-Smalltalk-Dev#setting-up-cuis-in-your-machine
https://github.com/Cuis-Smalltalk/Cuis-Smalltalk-Dev#setting-up-cuis-in-your-machine
https://lists.cuis.st/mailman/listinfo/cuis-dev
https://lists.cuis.st/mailman/listinfo/cuis-dev
https://sites.google.com/view/cuis-university/descargas

Chapter 1: Smalltalk Philosophy 8

1.2.1 Editing your preferences

Once you read the information on the default windows, the next thing you
want to do is to adjust visual properties to fit your preferences and needs. To
do so, access the World menu ...Background click → Preferences... then
select the pin on the top right of the menu to make it permanent. Here you
have the most important options: the choice for the font size, the themes
whenever your prefer light or dark colouring. There are other preferences
you can explore by yourself. Once you are done, do ...World menu→ Save...
to make your preferences permanent. In this book, we keep the default Cuis-
Smalltalk theme, we suggest you to do the same so your environment reflects
the book screenshots.

Figure 1.1: Set Preferences

1.2.2 Fun with window placement

The first tool to discover is the Workspace tool. It is a kind of text editor
to key in Smalltalk code you can execute immediately. Do ...World menu→
Open... → Workspace...

Now we ask Cuis-Smalltalk to make the window’s placement: click the
blue icon (top left) to access the window option and experiment with the
white area to place the Workspace window at the half left of the Cuis-
Smalltalk environment.

Chapter 1: Smalltalk Philosophy 9

Figure 1.2: Window options

The resize... option even offers more freedom to place the window.
Try the following exercise:

� �
Use the resize... option to place the Workspace centered on

Cuis-Smalltalk environment.
 	
Exercise 1.1: Middle placement

1.3 Writing your first scripts
In this section you will learn how to write simple scripts in the Workspace to
get a taste and feeling about Smalltalk code. The examples are associated
with small exercises to experiment with and accompanied with solutions in
the annex. We intentionally keep the details of the syntax out of this section.

In a Workspace, the usual Hello World! program can be written in
Smalltalk:

Transcript show: 'Hello World!'

Example 1.1: The traditional ’Hello World!’ program

Chapter 1: Smalltalk Philosophy 10

To execute this code, select it with the mouse and over it do ...right mouse
click → Do it (d)... You may now see nothing happen! Indeed to see the
output, you need a Transcript window to be visible. The Transcript is a
place where programmer can send information for the user as we are doing
here. Do ...World menu → Open... → Transcript... and execute the code
again.

Figure 1.3: Transcript window with output

The workspace code comes in three parts:

• the string literal 'Hello World!'

• the message #show: with its argument 'Hello World!'

• the class Transcript receiving the message #show: with its argument

The action of printing takes place in the class Transcript. The code
execution is also invoked with keyboard shortcuts Ctrl-a (select All) then
Ctrl-d (Do it).

Transcript show: 'Hello World!'.

Transcript newLine.

Transcript show: 'I am Cuising'

Example 1.2: Multiple lines

In this three line script, observe how the lines are separated by a dot “.”.
This period is a line separator so it is not needed in the third line nor in a
one line script. The message #newLine has no argument.

A String is the way text is represented in a programming language, it
is a collection of characters. We already met string with our first script,
it is enclosed in single quotes: 'hello world!'. We capitalize it with the
#capitalized message:

Transcript show: 'hello world!' capitalized
⇒ 'Hello world!'

To convert all the characters in capital use the #asUppercase message:

Transcript show: 'hello world!' asUppercase

Chapter 1: Smalltalk Philosophy 11

⇒ 'HELLO WORLD!'

Two strings are concatenated with the #, message:

Transcript show: 'Hello ', 'my beloved ', 'friend'
⇒ 'Hello my beloved friend'

Example 1.3: Concatenate strings

� �
Add a message to modify Example 1.3 to output ’Hello MY

BELOVED friends’.
 	
Exercise 1.2: Concatenate and uppercase

1.3.1 Fun with numbers

In your Workspace, to compute a factorial execute the example below with
Ctrl-a then Ctrl-p (Print it):

100 factorial
⇒ 9332621544394415268169923885626670049071596826438162146859

29638952175999932299156089414639761565182862536979208272237582

51185210916864000000000000000000000000

Cuis-Smalltalk handles very large integer numbers without requiring a
special type declaration or method. To convince yourelf try the example
below:

10000 factorial / 9999 factorial
⇒ 10000

If you execute and print with Ctrl-p the code: 10000 factorial, you
realize it takes far more time to print one factorial result than to compute
two factorials and divide them. The result is an integer as expected, not a
scaled decimal number as many computer languages will return.

As we are discussing division, you may not get the result you expect:

15 / 4
⇒ 15/4

Chapter 1: Smalltalk Philosophy 12

It looks like Cuis-Smalltalk is lazy because it does not answer the decimal
number 3.75 as we were expecting. In fact Cuis-Smalltalk wants to be as
accurate as possible, and its answer is a rational fraction! After all, fractions
are just division we are too lazy – because it is troublesome – to compute,
Cuis-Smalltalk does just that!

Try out this to understand what is happening underneath:

(15 / 4) + (1 / 4)
⇒ 4

Is it not wonderful? Cuis-Smalltalk computes with rational numbers.
We started with division and addition operations on integer, and we got an
accurate result thanks to intermediate computation on rational numbers.� �

In the example, observe how the parentheses are used although
in arithmetic calculation the division is performed first. With Cuis-
Smalltalk you need to specify the order of operations with parentheses.
We will explain why later.
 	
� �

Write the code to compute the sum of the first four integer in-
verses. 4 inverted is 1/4
 	

Exercise 1.3: Inverse sum

Integers can be printed in different forms with the appropriate message:

2020 printStringRoman ⇒ 'MMXX'

2020 printStringWords ⇒ 'two thousand, twenty'

"Number as the Maya did"

2020 printStringBase: 20 ⇒ '510'

Chapter 1: Smalltalk Philosophy 13

� �
Print 2020 as words capitalized.
 	

Exercise 1.4: Capitalize number as words

The integer and float numbers we have played with are Numeric Liter-
als. Literals are building blocks of the language and considered as constant
expressions. They literally are as they appear.

There are several syntax variants which denote a number:

Numeric literal What it represents
1 integer (decimal notation)
2r101 integer (binary radix)
16rFF integer (hexadecimal radix)
1.5 floating point number
2.4e7 floating point (exponential notation)

Depending on the value we need to use, we can mix these literal repre-
sentations:

16rA + 1 + 5e-1 + 6e-2
⇒ 289/25

1.4 Spacewar!
The Spacewar! game was initially developed in 1962 by Steve Russell on
a DEC PDP-1 minicomputer. It is said to be the first known video game
installed on several computers and it was very popular in the programming
community in the 1960s. It was ported and rewritten several times to dif-
ferent hardware architectures and complemented with additional features.
Computer Space, the first arcade video game cabinet was a clone of Space-
war!

Chapter 1: Smalltalk Philosophy 14

Figure 1.4: Spacewar! game on DEC PDP-1 minicomputer

Wikipedia describes very precisely this space combat simulation game:

The gameplay of Spacewar! involves two monochrome spaceships
called "the needle" and "the wedge", each controlled by a player,
attempting to shoot one another while maneuvering on a two-
dimensional plane in the gravity well of a star, set against the
backdrop of a starfield. The ships fire torpedoes, which are not
affected by the gravitational pull of the star. The ships have a lim-
ited number of torpedoes and supply of fuel, which is used when
the player fires the ship’s thrusters. Torpedoes are fired one at a
time by flipping a toggle switch on the computer or pressing a but-
ton on the control pad, and there is a cooldown period between
launches. The ships remain in motion even when the player is not
accelerating, and rotating the ships does not change the direction
of their motion, though the ships can rotate at a constant rate
without inertia.

Each player controls one of the ships and must attempt to shoot
down the other ship while avoiding a collision with the star or the
opposing ship. Flying near the star can provide a gravity assist to
the player at the risk of misjudging the trajectory and falling into
the star. If a ship moves past one edge of the screen, it reappears
on the other side in a wraparound effect.

—Wikipedia, Spacewar!

Therefore, the protagonists of the game are:

1. a central star generating a gravity field,

2. a star field background,

3. two space ships called the needle and the wedge controlled by two play-

https://en.wikipedia.org/wiki/Spacewar!#Gameplay

15

ers.

4. torpedoes fired by the space ships.

Figure 1.5: Spacewar! game play

16

2 The Message Way of Life

The key in making great and growable systems is much more to de-
sign how its modules communicate rather than what their internal
properties and behaviors should be.

—Alan Kay

A Smalltalk system is a collection of entities communicating with each
other through messages. That’s all, there is nothing more.

2.1 Communicating entities
When a given entity receives a message from another entity, it triggers a
specific behavior. The receiving entity of the message is called the receiver
and the sending entity, the sender. In Cuis-Smalltalk terminology, an entity
is called an instance of a class, a class instance, or simply an instance. A
class is a kind of model for an entity.

The behavior is defined internally in the receiver and it can be triggered
from any instance. Behaviors are invoked only by messages sent between
entities. An entity may send a message to itself. A behavior is defined in a
class and is called a method.

This results in a huge cloud of entities communicating with each other
through message sending. New entities are instantiated when needed then
automatically garbage collected when no longer required. On a fresh Cuis-
Smalltalk environment, the count of class instances is more than 150000.

ProtoObject allSubclasses sum: [:class | class allInstances size]
⇒ 152058

Example 2.1: Calculating the number of entities

The count of classes, the models for the entities – instances of the class
Class – is less than 600.

Smalltalk allClasses size
⇒ 586

Example 2.2: Calculating the number of classes

Chapter 2: The Message Way of Life 17� �
Because you are not using the base image but one used to teach

classes, you will likely see a much larger number.
 	
To be honest, in our previous chapter we skipped this important detail

on Smalltalk design. We wrote about message sending without explaining
much, we wanted you to discover this design informally. The scripts you read
and wrote were all about entities communicating with each other through
messages.

2.2 Message send definitions
There are three kinds of messages in Cuis-Smalltalk:

• Unary messages take no argument.
In 1 factorial the message #factorial is sent to the object 1.

• Binary messages take exactly one argument.
In 1 + 2 the message #+ is sent to the object 1 with the argument 2.

• Keyword messages take an arbitrary number of arguments.
In 2 raisedTo: 6 modulo: 10 the message consisting of the message
selector #raisedTo:modulo: and the arguments 6 and 10 is sent to the
object 2.

Unary message selectors consist of alphanumeric characters, and start
with a lower case letter.

Binary message selectors consist of one or more characters from the fol-
lowing set:

+ - / \ * ~ < > = @ % | & ? ,

Keyword message selectors consist of a series of alphanumeric keywords,
where each keyword starts with a lower-case letter and ends with a colon.

Unary messages have the highest precedence, then binary messages, and
finally keyword messages, so:

2 raisedTo: 1 + 3 factorial
⇒ 128

First we send factorial to 3, then we send + 6 to 1, and finally we send
raisedTo: 7 to 2.

Precedence aside, evaluation is strictly from left to right, so

1 + 2 * 3

Chapter 2: The Message Way of Life 18

⇒ 9

is not 7. Parentheses must be used to alter the order of evaluation:

1 + (2 * 3)
⇒ 7

However, for clarity of understanding we may want to them even when
not needed. In the Spacewar! code snippet below, the parentheses are
superfluous make code easier to read:

newVelocity ← (ai + ag) * t + velocity

Example 2.3: Ship velocity

In the Example 1.2, the message #show: and #newLine are sent to the
same Transcript object. In such circumstance, we can use the cascade
technique to avoid this repetition. The receiver Transcript is written once
and the cascade of sent messages are separated by semicolons:

Transcript

show: 'Hello World!';

newLine;

show: 'I am Cuising'

Example 2.4: Cascade of messages

Another example from the Spacewar! game:

aShip

velocity: 0 @ 0;

morphPosition: randomCoordinate value @ randomCoordinate value

Example 2.5: Stop and teleport spaceship at a random position

Observe the text here is formatted to ease code understanding. It is
possible to write the cascade of messages in one line, but it reduces the
readability of the code:

Transcript show: 'Hello World!'; newLine; show: 'I am Cuising'

The Transcript class is frequently helpful in presenting useful informa-
tion when developing an application. An alternative to the Ctrl-d (Do it)

Chapter 2: The Message Way of Life 19

shortcut is Ctrl-p (Print it), which executes the script and prints the result
direcly in the Workspace.

In the Example 2.4, we have requested no special result. Selecting the
text and typing Ctrl-p results in the default, which is to return the object
to which a message is sent, in this case the Transcript.

2.3 Message to string entities
Access to a character in a string is done with the keyword message #at: and
its index position in the string as argument. Execute the following examples
with the Ctrl-p shortcut:

'Hello' at: 1 ⇒ $H

'Hello' at: 5 ⇒ $o

Observe how a character is prefixed with the “$” symbol.

Caution. The index indicates position naturally from 1 to the string
length.

'Hello' indexOf: $e
⇒ 2

To change one character, use the companion two keywords message
#at:put:. The argument must be noted as a character:

'Hello' at: 2 put: $a; yourself
⇒ 'Hallo'

Observe the use of the cascade with the #yourself message. A cascade
sends following messages to the original receiver, so #yourself returns the
updated string. Without the cascade, $a is returned as the result of the
#at:put: message.

� �
Replace each character of the string ’Hello’ to become ’Belle’.
 	

Exercise 2.1: Hello to Belle

Character can be converted to integer and integer to character:

$A asciiValue ⇒ 65

Chapter 2: The Message Way of Life 20

(65 + 25) asCharacter ⇒ $Z

Shuffling a string is funny but without much use. Nevertheless, shuffling
can apply to any kind of collection, not only to string, and it proves to be
of some use as we may see later:

'hello world' shuffled
⇒ 'wod llreohl'

Note that results of each shuffle are different.

Messages naturally compose.

'hello world' shuffled asArray
⇒ #($h $d $l $ $o $w $e $l $l $o $r)

An Array literal starts with a hash or sharp character, $# and parentheses
surround the elements of the array. In this case the elements are Characters,
but they can be instances of any class.

Similarly, we can ask a string to sort its characters:

'hello world' sort
⇒ ' dehllloorw'

Like #shuffled, all collections answer to the message #sorted, which
answers a sorted collection.

'hello world' sorted
⇒ #($ $d $e $h $l $l $l $o $o $r $w)

Note that this breaks patterns. We get a String result when giving a
String the message #shuffled but get an Array instance when giving a
String instance the message #sorted.

We take much care in Smalltalk to give names which reduce surprise, but
there are cases, as here, where something odd happens. We will discuss this
further when we look at different kinds of Collections and discuss how we
name instances and methods to show intent and reduce surprise.

2.4 Messages to number entities
Earlier, we discussed how Cuis-Smalltalk knows about rational fractions.
The four arithmetic operations and mathematical functions are implemented
with unary and binary messages understood by the rational numbers:

Chapter 2: The Message Way of Life 21

(15 / 14) * (21 / 5) ⇒ 9 / 2

(15 / 14) / (5 / 21) ⇒ 9 /2

(3 / 4) squared ⇒ 9 / 16

(25 / 4) sqrt ⇒ 5 / 2

� �
Write the code to compute the sum of the squares of the inverse

of the first four integers.
 	
Exercise 2.2: Sum of the squares

If Cuis-Smalltalk integer division returns a rational number, how do we
find the result in decimal? One option is to write a number as a floating
point literal, a Float. This kind of literal is written as the integer part and
fractional parts are separated by a dot “.”:

15.0 / 4 ⇒ 3.75

15 / 4.0 ⇒ 3.75

Another option is to convert an integer to a float with the #asFloat
message. It is very useful when the integer is in a variable:

15 asFloat / 4
⇒ 3.75

You can also ask for division with truncation to get an integer result using
the message #//:

15 // 4
⇒ 3

The modulo reminder of the Euclidean division is computed with the
message #\\:

15 \\ 4
⇒ 3

Cuis-Smalltalk knows arithmetic operations to test if an integer is an
odd, even, prime number or divider. You just send the appropriate unary
or keyword message to the number:

Chapter 2: The Message Way of Life 22

25 odd ⇒ true

25 even ⇒ false

25 isPrime ⇒ false

23 isPrime ⇒ true

91 isDivisibleBy: 7 ⇒ true

117 isDivisibleBy: 7 ⇒ false

117 isDivisibleBy: 9 ⇒ true

Example 2.6: Testing on integer

With specific keyword messages you can compute the Least Common
Multiple and Greatest Common Divisor. A keyword message is composed
of one or several colon(s) “:” to insert argument(s):

12 lcm: 15 ⇒ 60

12 gcd: 15 ⇒ 3

In the Spacewar! game, the central star is the source of a gravity field.
According to the Newton’s law of universal gravitation, any object with a
mass – a spaceship or a torpedo in the game – is subjected to the gravitational
force. We compute it as a vector to account for both its direction and its
magnitude. The game code snippet below shows a (simplified) mixed scalar
and vector calculation done with message sending (See Figure 2.4):

-10 * self mass * owner starMass / (position r raisedTo: 3) * position

Example 2.7: Computing the gravity force vector

2.5 A brief introduction to the system Browser
Smalltalk organizes instance behaviors using classes. A class is an object
which holds a set of methods to be executed when one of its instances receives
a message that is the name of one of these methods.

The System Browser, in short the Browser, is a tool to rule all the classes
in Cuis-Smalltalk. It is both a tool to explore the classes (system or user
ones) and to write new classes and methods.

To access the tool ...World menu → Open... → Browser...

Chapter 2: The Message Way of Life 23

Class Category Class Method Category Method

Method Source CodeInstance Methods Class Comment Class Methods

Figure 2.1: The System Browser

At the top left are the class categories, groups of classes sharing the same
theme. A category can also be used to create a Package, which is an organ-
isational element to save code in a file system. In Figure 2.1, the selected
class category is Kernel-Numbers, a group of classes we already started us-
ing. The term Kernel- indicates it is part of fundamental categories, but it
is only a convention. See the other categories as Kernel-Text and Kernel-
Chronology related to text and date entities.

Next to the right are the classes in the selected class category. They
are nicely presented in a parent-child class hierarchy. When a class is first
selected in this pane, its declaration appears in the large pane below, the
Number class declaration is:

Magnitude subclass: #Number

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Kernel-Numbers'

Chapter 2: The Message Way of Life 24

A few important points in this declaration:

• Number is a subclass of Magnitude. This means Number is a kind of
specialized Magnitude.

• the declaration itself is Smalltalk code, indeed the message
#subclass:instanceVariableNames:classVariableNames:... was
sent to Magnitude to create this class.

• the subclass: argument Number is prefixed with “#”, it is a symbol,
a kind of unique string. Indeed when declaring the Number class, the
system does not know about it yet, so it is named as a symbol.

• The instanceVariableNames: argument is a string: the instance vari-
ables of the class are declared by names separated by a space. There
are none in this class definition.

A subclass inherits behaviors from its parent superclass, and so only needs
to describe what is different from its superclass. An instance of Number adds
methods (which define behaviors) unknown to an instance of Magnitude.
We will explore this in detail as we go forward.

To learn about the purpose of a class, it is good practice to always visit
the class comment. Often a comment also comes with code examples to learn
how to use the object; these code snippets can be selected and executed in
place as done from a Workspace. In Figure 2.1, see the comment button to
read or to edit the comment of the selected class.

To the right of the class panel is the method categories panel. A class
may have tens of methods, so grouping them by category helps other users
orient themselves in finding related methods. As a reference, Number has
more than 100 instance side methods implemented in itself1. Clicking the
arithmetic category directly gives access to related methods in the next
and last pane at the right.� �

A right click on the Class Category pane brings up its context
menu. You can select find class .. or, as the menu indictes, use Ctrl-
f (Find), to get a fill-in panel and type part of a class name to match.
Try it with String.
 	

1 When considering its parents, the combined method count is more than 300.

Chapter 2: The Message Way of Life 25

� �
How many methods are there in the arithmetic method category

of the String class?
 	
Exercise 2.3: Count of methods

In the Browser, once a method is selected – in Figure 2.1, abs method
– the bottom part shows its source code, ready to be explored or edited.
Often, you will find a small comment just after the method name, it will be
surrounded by double quotes.

Every object knows its own class and will respond it when sent the mes-
sage #class.

Tip. In the workspace Ctrl-b (Browse) on the class name will open a
Browser on the named class:

• In the Workspace, type 2 class and print with Ctrl-p,

• SmallInteger is printed and automatically highlighted as the current
selection,

• Invoke the Browser on the selected SmallInteger class with Ctrl-b,

• A new Browser instance opens on the SmallInteger, ready to be ex-
plored.

2.6 Spacewar! models

2.6.1 First classes

In the last chapter we listed the protagonists of the game. Now, we propose
a first implementation of the game model with a set of classes representing
the involved entities:

1. the game play ⇒ SpaceWar class,

2. a central star ⇒ CentralStar class,

3. two space ships ⇒ SpaceShip class,

4. torpedoes ⇒ Torpedo class.

Before defining these classes in Cuis-Smalltalk, we want to create a ded-
icated class category to group them there.

In any kind of Cuis-Smalltalk window, pressing right-click on a pane will
typically bring up a menu of operations you can apply which are specific to
that pane.

Chapter 2: The Message Way of Life 26

With the mouse pointer over the class category pane of the Browser –
the most left one – just do:

...right mouse click → add item... then key in Spacewar!

Once our new category is set, the Browser proposes on the method source
code pane – the bottom one – a code template to create a new class in the
Spacewar! category:

Object subclass: #NameOfSubclass

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

We replace the symbol #NameOfSubclass with a symbol representing
the name of the class we want to create. Let’s start with #SpaceWar. To
save the class, over the class declaration code do ...right mouse click →
Accept... Cuis-Smalltalk will ask your initials and name if it hasn’t before.
Alternatively, you can just do Ctrl-s (Save).

Then you repeat the process for each of #SpaceShip, #CentralStar and
#Torpedo. If necessary, to get another class code template, click the class
category Spacewar!.

When done, your class category should be filled with four classes as in
Figure 2.2.

Chapter 2: The Message Way of Life 27

Figure 2.2: Spacewar! class category

2.6.2 Spacewar! package

Another important use case of a class category is to define a package to save
code on file. A package saves the code of the classes held in a given class
category and a bit more, but more on that last point later. To create our
Spacewar! package and save our game code we use the Installed Packages
tool.

1. Open the Installed Packages tool ...World menu → Open... →
Installed Packages...

2. On the Installed Packages window, do ...click new button→ Input Space-
war! → Return...

3. Do ...select Spacewar! package → save button...

Chapter 2: The Message Way of Life 28

Figure 2.3: Installed Package window

A file Spacewar!.pck.st is created along the Cuis-Smalltalk image file.
To install a package in a fresh Cuis-Smalltalk environment, use the File List
tool:

1. Do ...World menu → Open... → File List...

2. Search for the file Spacewar!.pck.st and click the install package
button

You can also drag and drop the package file from your operating system
over to the Squeak window, upon dropping the file over the window Cuis-
Smalltalk will ask you what you want to do with this package. To install it
on your enviroment you can simply press Install package.

Or, you can open a Workspace, type in Feature require: 'Spacewar!'
and Ctrl-d Do it.

Now, we have created and saved the package. Whenever you start with
a fresh Cuis-Smalltalk environment, you can load the game package.

The classes we defined are empty shells with neither state nor behavior.
These will be filled in and refactored in the next chapters.

2.6.3 The Newtonian model

For an enjoyable game experience, the player ships must follow Newton’s
laws of motion. Acceleration, speed and position are computed according to
these laws. The ships are subjected to two forces: the acceleration from the
gravity pull of the central star and an inner acceleration coming from the
ship engines.

Later, we will learn how these equations are easily converted to computer
calculations.

29

Legend

α : shipheading

a⃗i :internal acceleration,‖a⃗i‖=a

a⃗i=a (cosα i⃗ +sinα j⃗)

‖⃗OM‖=d , distance star / ship

u⃗=−O⃗M
‖⃗OM‖

=−
x i⃗ + y j⃗
d

Gravity pull

a⃗g=
G⋅m1⋅m2
d 2

⋅⃗u

a⃗g=−
G⋅m1⋅m2
d2

⋅(x i⃗ + y j⃗d)
a⃗g=

−G⋅m1⋅m2
d3

⋅(x i⃗ + y j⃗)

Speed

d v⃗
dt

= a⃗g+ a⃗i

v⃗=(a⃗g+ a⃗i)⋅t+ v⃗ p
v⃗ p : speed at previous time lapse

Position

O⃗M=
1
2
⋅(a⃗g+a⃗i)⋅t

2
+ v⃗ p⋅t+O⃗M p

O⃗M p : positionat previous time lapse

O i⃗

j⃗

Central star

α

a⃗i

M (x ; y)

a⃗g

Ship

Figure 2.4: Equations of the accelerations, speed and position

30

3 Class, Model of Communicating
Entities

If I give you something that you can play with and extend, even
a piece of paper with a paragraph and I say it’s not written well,
rewrite it, that’s easier than giving you nothing and say make some-
thing; you know, giving a blank sheet of paper and starting to write.
So the lovely part that has proven true for professional program-
mers as well as kids is when you start with something, an object
that does something, and then you put many objects like those
together and have them interact, and then you extend and make
them behave a little differently, you can take a very incremental
approach to learning how to control a computer system.

—Adele Goldberg

Cuis-Smalltalk is a pure object oriented programming (OOP) language.
All the entities in the language: integers, floats, rational numbers, strings,
collections, blocks of code and so forth – every instance usable as a noun in
Smalltalk – is an object.

3.1 Understanding Object Oriented Programming
But just what is an object?

At its simplest, an object has two components:

• Internal state. This is embodied by variable(s) known only by the ob-
ject. A variable only visible within the object is called a private variable.
As a consequence, it is impossible – if the object decides so – to know
the internal state of the object from another object.

• A repertoire of behaviors. These are the message(s) an object instance
responds to. When the object receives a message it understands, it
gets its behavior from a method with that name known by its class or
superclass.

The method name is called a selector because it is used to select which
behavior is invoked. For example, in 'hello' at: 1 put: $B, the method
invoked has the selector #at:put: and the arguments 1 and $B. All selectors
are symbols.

Chapter 3: Class, Model of Communicating Entities 31

Object instances are created – instantiated – following a model or tem-
plate. This model is known as its Class. All instances of a class share the
same methods and so react in the same ways.

For example, there is one class Fraction but many fractions (1/2, 1/3,
23/17, ...) which all behave the way we expect fractions to behave. The
class Fraction and the classes it inherits from define this common behavior,
as we will now describe.

A given class declares its internal variables – states – and the behavior
by implementing the methods. A variable is basically a named box which
can hold any object. Each instance variable of a class gets its own box with
the common name.

Lets see how the Fraction class is declared:

Number subclass: #Fraction

instanceVariableNames: 'numerator denominator'

classVariableNames: ''

poolDictionaries: ''

category: 'Kernel-Numbers'

As expected there are two variables – named instance variables – to define
the numerator and denominator of a fraction. Each instance of fraction has
its own numerator and its own denominator.

From this declaration, we observe there is a hierarchy in the class def-
inition: Fraction is a kind of Number. This means a fraction inherits the
internal state (variables) and behavior (methods) defined in the Number class.
Fraction is called a subclass of Number, and so naturally we call Number a
superclass of Fraction.

A Class specifies the behavior of all of its instances. It is useful to be able
to say this object is like that object, but with these differences. We do this
in Smalltalk by having classes inherit instance state and behavior from their
parent Class. This child, or subclass then specifies just the instance state
and behavior that is different from its parent, retaining all the unmodified
behaviours.

This aspect of object oriented programming is called inheritance. In
Cuis-Smalltalk, each class inherits from one parent class.

In Smalltalk, we say that each object decides for itself how it reponds to
a message. This is called polymorphism. The same message selector may be
sent to objects of different Classes. The shape (morph) of the computation is
different depending on the specific class of the many (poly) possible classes
of the object receiving the message.

Different kinds of objects respond to the same #printString message in
different, but appropriate ways.

Chapter 3: Class, Model of Communicating Entities 32

We have already met fractions. Those fractions are objects called in-
stances of the class Fraction. To create an instance we wrote 5 / 4, the
mechanism is based on message sending and polymorphism. Let us look into
how this works.

The number 5 is an integer receiving the message #/, therefore looking at
the method / in the Integer class we can see how the fraction is instatiated.
See part of this method:

/ aNumber

"Refer to the comment in Number / "

| quoRem |

aNumber isInteger ifTrue:

../..

ifFalse: [↑ (Fraction numerator: self denominator: aNumber) reduced]].

../..

From this source code, we learn that in some situations, the method
returns a fraction, reduced. We can expect that in some other situation an
integer is returned, for example 6 / 2.

In the example, we observe the message #numerator:denominator: is
sent to the class Fraction, such a message refers to a class method un-
derstood only by the Fraction class. It is expected such a named method
returns an instance of a Fraction.

Try this out in a workspace:

Fraction numerator: 24 denominator: 21
⇒ 24/21

Observe how the resulting fraction is not reduced. Whereas it is reduced
when instantiated with the #/ message:

24 / 21
⇒ 8/7

A class method is often used to create a new instance from a class. In
Example 4.7, the message #new is sent to the class OrderedCollection to
create a new empty collection; new is a class method.

In Example 4.8, the #newFrom: message is sent to the class
OrderedCollection to create a new collection filled with elements from
the array given in argument; newFrom: is another class method.

Chapter 3: Class, Model of Communicating Entities 33

Now observe the hierarchy of the Number class:

Number
Float
BoxedFloat64
SmallFloat64

Fraction
Integer
LargePositiveInteger
LargeNegativeInteger

SmallInteger

Float, Integer and Fraction are direct descendants of the Number class.
We have already learned about the #squared message sent to integer and
fraction instances:

16 squared ⇒ 256

(2 / 3) squared ⇒ 4/9

As the #squared message is sent to Integer and Fraction instances, the
associated squared method is called an instance method. This method is
defined in both the Number and Fraction classes.

Let’s examine this method in Number:

Number>>squared

"Answer the receiver multiplied by itself."

↑ self * self

In an instance method source code, self refers to the object itself, here
it is the value of the number. The ↑ (also ^) symbol indicates to return the
following value self * self. One might pronounce ↑ as “return”.

Now let’s examine this same method in Fraction:

Fraction>>squared

↑ Fraction

numerator: numerator squared

denominator: denominator squared

Here a new fraction is instantiated with the original instance numerator
and denominator being squared. This alternate squared method, ensures a
fraction instance is returned.

When the message #squared is sent to a number, different methods are
executed depending on if the number is a fraction or another kind of number.
Polymorphism means that the Class of each instance decides how it will
repond to a particular message. Here, the Fraction class is overriding the

Chapter 3: Class, Model of Communicating Entities 34

squared method, defined above in the class hierarchy. If a method is not
overridden, an inherited method is invoked to respond to the message.

Still in the Number hierarchy, let’s examine another example of polymor-
phism with the #abs message:

-10 abs ⇒ 10

5.3 abs ⇒ 5.3

(-5 / 3) abs ⇒ 5/3

The implementation in Number does not need much explanation. There
is the #ifTrue:ifFalse: we have not yet discussed so far, but the code is
quite self-explanatory:

Number>>abs

"Answer a Number that is the absolute value (positive magnitude) of the

receiver."

self < 0

ifTrue: [↑ self negated]

ifFalse: [↑ self]

This implementation will do just fine for the Number subclasses. Nev-
ertheless, there are several classes overriding it for specialized or optimized
cases.

For example, regarding large positive integer, abs is empty. Indeed, in
the absence of explicitly returned value, the default returned value is the
instance itself, in our situation the LargePositiveInteger instance:

LargePositiveInteger>>abs

The LargeNegativeInteger knows it is negative and its absolute value
is itself but with its sign reversed, that is negated:

LargeNegativeInteger>>abs

↑ self negated

These two overriding methods are more efficient as they avoid unnecessary
checks and ifTrue/ifFalse branches. Polymorphism is often used to avoid
unnecessary checks and code branches.

Chapter 3: Class, Model of Communicating Entities 35� �
If you select the text abs in a Browser or Workspace and right-

click to get the context menu, you will find an entry Implementors
of it. You can select this or use Ctrl-m (iMplementors) to see how
various methods for #abs use polymorphism to specialize their answer
to produce the naturally expected result.
 	

As an object instance is modeled by its class, it is possible to ask any ob-
ject its class with the #class message. Observe carefully the class returned
in line 2 and 3:

1 class ⇒ SmallInteger

(1/3) class ⇒ Fraction

(6/2) class ⇒ SmallInteger

(1/3) asFloat class ⇒ SmallFloat64

(1.0/3) class ⇒ SmallFloat64

'Hello' class ⇒ String

('Hello' at: 1) class ⇒ Character

Example 3.1: Asking the class of an instance

3.2 Explore OOP from the Browser
In Figure 2.1 of the Browser, below the classes pane, there are three buttons:

• instance: to access the instance methods of the selected class. These
methods apply to each and every instance of the class. Each instance
reacts to these.

• ?: to access to documentation – comment – of the selected class.

• class: to access the class methods of the selected class. These methods
are only accessible from the class itself. Only the class object reacts to
class methods.

Below these three buttons, observe the wide text pane, it provides con-
textual information on the selected item.

Again, Class methods apply to the Class itself. Instance Methods apply
for all instances modeled by the class. We saw above that the class Fraction
has a method #numerator:denominator: which is used to get a new instance
of a Fraction. There is only one Fraction class object. Messages like
#squared and #abs are sent to any Fraction instance, of which there are
many.

Up to now we have attempted to be very careful with definitions, but
you know that when we say “a fraction” we mean “an instance of the class
Fraction”. From here our language will be more casual.

Chapter 3: Class, Model of Communicating Entities 36

� �
When the Float class is selected, what is the information pro-

vided by the text pane?
 	
Exercise 3.1: Float class information

We have spent much time here because it is important to avoid confusion
between instance methods and class methods. Let’s consider the Float class
as an example.

Class Methods. In Figure 3.1 the methods listed are class side, in the
browser the class button is pressed to see this list.

Figure 3.1: Class methods in Float

From a Workspace, these methods are called with the message name sent
directly to the class:

Float e
⇒ 2.718281828459045

Float epsilon
⇒ 2.220446049250313e-16

Float fmax
⇒ 1.7976931348623157e308

Chapter 3: Class, Model of Communicating Entities 37� �
You have noticed that text typed into the Workspace is colored

and highlighted based on what you type. We will discuss this below
when we talk about the Smalltalk language, but the idea is to be helpful.
If you start to type a word the Cuis Workspace knows about, you can
press the tab key and get a set of choices for completion of the word.
Try typing Float epsi and pressing tab. You can then press enter and
should see Float epsilon. Click elsewhere on the Workspace to make
this menu go away.
 	

Nevertheless, you can not send a class message to an instance of Float,
it throws an error and opens the red debugger window. Just close the debug
window for now to ignore the result.

3.14 pi
⇒ MessageNotUnderstood: SmallFloat64>>pi

Float pi e
⇒ MessageNotUnderstood: SmallFloat64>>e

Often these class methods are used to access constant value as seen in
the previous example or to create a new instance:

OrderedCollection new
⇒ Create a new empty ordered collection

Fraction numerator: 1 denominator: 3
⇒ 1/3 "a fraction instance"

Float new
⇒ 0.0

Float readFrom: '001.200'
⇒ 1.2

Integer primesUpTo: 20
⇒ #(2 3 5 7 11 13 17 19)

Instance methods. In Figure 3.2, the methods listed are instance side, in
the browser the instance button is pressed to see this list.

Chapter 3: Class, Model of Communicating Entities 38

Figure 3.2: Instance methods in Float

In a Workspace, these methods are called with the message name sent
directly to an instance:

-10.12 abs ⇒ 10.12

3.14 cos ⇒ -0.9999987317275395

-10.12 * 2 ⇒ -20.24

Instance method message can not be sent directly to a class, you need to
instantiate first an object:

Float cos
⇒ MessageNotUnderstood: Float class>>cos

Fraction squared
⇒ MessageNotUnderstood: Fraction class>>squared

OrderedCollection add: 10
⇒ MessageNotUnderstood: OrderedCollection class>>add:

Of course you can mix both class and instance methods, as long as you
send the message to the appropriate class or instance:

Float pi cos
⇒ -1.0

Float e ln
⇒ 1.0

(Fraction numerator: 4 denominator: 5) squared
⇒ 16/25

OrderedCollection new add: Float pi; add: Float e; yourself
⇒ an OrderedCollection(3.141592653589793 2.718281828459045)

Here another example from Spacewar! mixing class and instance meth-
ods. This portion of code updates the orientation of a torpedo according to
its velocity vector:

Chapter 3: Class, Model of Communicating Entities 39

self rotation: (velocity y arcTan: velocity x) + Float halfPi

Example 3.2: Aligning a torpedo with its velocity direction

With this brief introduction to the system browser, your are now equipped
to explore the system classes.

3.3 Cuis system classes
As we noted above, Cuis-Smalltalk is a pure object oriented environment.
This means that every single entitiy you are dealing with is represented as an
instances of a class written in Cuis-Smalltalk itself. As a direct consequence,
Cuis-Smalltalk is mostly written in itself. This means the entire system is
open to you to learn and play with.

What we call system classes are models of fundamental objects. In other
programming languages, these would be implemented in that language’s
standard library.

In a truely open system, there is no real distinction between system classes
and user classes, but it will help us to draw a boundary around the most
used objects. Let’s have a brief introduction to some fundamental Smalltalk
classes and their most important methods.

In the upper left pane of the Browser, Categories of classes important to
start with are:

• Kernel-Numbers. Related to the different number representations and
calculations, including mathematics functions, conversion, intervals and
even iterations.

• Kernel-Text. Related to character and string as collection of characters.

• Collections-Abstract, Collections-Unordered, Collections-
Sequenceable, Collections-Arrayed. Related to Array, Dictionary, Set,
OrderedCollection and many more. This category includes common
accessing, enumeration, mathematical functions, and sorting.

3.4 Kernel-Numbers
The top hierarchy Number class shows most of the behaviors inherited by the
subclasses as Float, Integer and Fraction. The Smalltalk way to learn
about a behavior is to point the System Browser toward a top hierarchy
class and to explore the method categories.

Let’s suppose we want to round a float number. In Number, we explore
the Truncation and round off method category to discover several behaviors.
The next things to do is to test these messages in a Workspace to discover
the one we are searching for:

Chapter 3: Class, Model of Communicating Entities 40

1.264 roundTo: 0.1 ⇒ 1.3

1.264 roundTo: 0.01 ⇒ 1.26

1.264 roundUpTo: 0.01 ⇒ 1.27

1.264 roundTo: 0.001 ⇒ 1.264

Example 3.3: Rounding numbers, Workspace try out

Number is a very strange place to look for an indexed loop in a given
interval. Nevertheless, an interval is defined by start and stop numbers. In
the Number class, the method category intervals reveals related behaviors.
These methods work polymorphically with most kinds of number:

1 to: 10 do: [:i | Transcript show: 1 / i; space]
⇒ 1 (1/2) (1/3) (1/4) (1/5) (1/6) (1/7) (1/8) (1/9) (1/10)

1 to: 10 by: 2 do: [:i | Transcript show: 1 / i; space]
⇒ 1 (1/3) (1/5) (1/7) (1/9)

1/10 to: 5/3 by: 1/2 do: [:i | Transcript show: i; space]
⇒ (1/10) (3/5) (11/10) (8/5) (1/10) (3/5) (11/10) (8/5)

Float pi to: 5 by: 1/3 do: [:i | Transcript show: (i roundTo: 0.01) ; space]
⇒ 3.14 3.47 3.81 4.14 4.47 4.81

Example 3.4: Interval loops (for-loop)

Now, in the Integer class, explore the method category enumerating,
here is the timesRepeat:. When a portion of code needs to be executed
several times1, without the need of an index, the #timesRepeat: message is
sent to an integer. We already saw this variant in a previous section of this
chapter. Throwing a 6 face die 5 times can be simulated with an integer:

5 timesRepeat: [Transcript show: 6 atRandom; space]
⇒ 1 2 4 6 2

Example 3.5: Throwing a dice 5 times

Note: Expect a different result each time.

Intervals of numbers can be defined on their own, for future use:

1 More strictly, to be repeated an integer number of times.

Chapter 3: Class, Model of Communicating Entities 41

1 to: 10
⇒ (1 to: 10)

1 to: 10 by: 2
⇒ (1 to: 9 by: 2)

Example 3.6: Interval

Intervals work with other kinds of objects such as Characters:

$d to: $h
⇒ #($d $e $f $g $h)

In fact, an interval is an object of its own. It is a sort of collection:

(1 to: 10) class
⇒ Interval

(1 to: 10 by: 2) squared
⇒ #(1 9 25 49 81)

(1 to: 10) atRandom
⇒ 4 "different result each time"

In Spacewar!, when a ship is destroyed it is teleported to a random po-
sition in the square game play area. Intervals are handy to pick random
coordinates. In the example below, the variable randomCoordinate holds a
block of code – called an anonymous function in other languages. It picks a
random value in the interval consisting of the game play area left and right
extents:

randomCoordinate ← [(area left to: area right) atRandom].

aShip

velocity: 0 @ 0;

morphPosition: randomCoordinate value @ randomCoordinate value

Example 3.7: Teleport ship

Chapter 3: Class, Model of Communicating Entities 42

� �
Compute the cosine values in the interval [0 ; 2PI], each 1/10.

Output in the transcript.
 	
Exercise 3.2: Cosine table

Integer numbers are represented in different bases when prefixed with the
base and “r”. The r stands for radix, the base root by which the following
number is interpreted. When executing and printing Ctrl-p such a number,
it is immediately printed in the decimal base:

2r1111 ⇒ 15

16rF ⇒ 15

8r17 ⇒ 15

20rF ⇒ 15

10r15 ⇒ 15

Example 3.8: Integer represented in different base

Writing numbers as Mayans or Babylonians2:

"The Babylonians"

60r10 ⇒ 60

60r30 ⇒ 180

60r60 ⇒ 360

60r30 + 60r60 ⇒ 540

(60r30 + 60r60) printStringRadix: 60 ⇒ '60r90'

"The Mayans"

20r10 ⇒ 20

20r40 ⇒ 80 "pronounced 4-twenties in some languages"

20r100 ⇒ 400

Example 3.9: Counting like the ancients

Because of the nature of a number represented in base 2, shifting its bits
left and right is equivalent to multiplying by 2 and dividing by 2:

2 Bases 20 and 60 number representation are not exclusive to these civilisations, although
there are the most documented use cases.

Chapter 3: Class, Model of Communicating Entities 43

(2r1111 << 1) printStringBase: 2 ⇒ '11110'

2r1111 << 1 ⇒ 30

(2r1111 >> 1) printStringBase: 2 ⇒ '111'

2r1111 >> 1 ⇒ 7

Example 3.10: Shifting bits

� �
How will you multiply the integer 360 by 1024, without using the

multiplication operation?
 	
Exercise 3.3: Multiply by 1024

Hiatus with decimal numbers

We saw decimal numbers are written with a dot “.” to separate the integer
and the decimal parts: 1.5, 1235.021 or 0.5. The number 0.0000241 is
more easily written with the scientific notation 2.41e-5; it means 2 preceded
by 5 zeros or 2 as the fifth digit after the decimal dot.� �

Computers encode and store decimal numbers imprecisely. You
need to be aware of that when doing computation and equality compar-
ison. Many systems hide these errors because there are very tiny errors.
Cuis-Smalltalk does not hide this inaccuracy. There is good information
about this in the class comment of Float.
 	
0.1 + 0.2 - 0.3
⇒ 5.551115123125783e-17

Example 3.11: Computer dyscalculia!

In Example 3.11, the returned value should be zero but it is not the
case. The computer returns 5.55e-17, or 0.0000000000000000555, it is
very close to zero, but there is an error.

Chapter 3: Class, Model of Communicating Entities 44

� �
Give 3 calculations showing errors compared to the expected re-

sults.
 	
Exercise 3.4: Miscellaneous calculation errors with decimal number

When accuracy is absolutely mandatory use the Rational Numbers rep-
resentation of Cuis-Smalltalk.

A rational number is written with the division symbol between two inte-
gers: do Ctrl-p on 5/2 ⇒ 5/2. Cuis-Smalltalk returns a rational fraction,
it does not compute a decimal.

� �
What happen when executing this code 5/0?
 	

Exercise 3.5: Toward the infinite

Let’s come back to our computer dyscalculia with decimal numbers.
When using the rational numbers, the Example 3.11 becomes:

(1/10) + (2/10) - (3/10)
⇒ 0

Example 3.12: Calculation is correct using rational fractions!

This time we have the expected result. Under the covers the computer
only does the calculations with integer components so no roundoff results.
This is a fine example where solving some problem requires a paradigm shift.

� �
Return to Exercise 3.4 and use rational writing to represent

decimal numbers. The errors are gone.
 	
Exercise 3.6: Fix the errors

Chapter 3: Class, Model of Communicating Entities 45

Cuis-Smalltalk knows how to convert a decimal number to a fraction, by
sending the message #asFraction. We already acknowledged the computer
dyscalculia trouble with decimal number, this is why when asking for a
fraction representation we have this strange answer. The internal computer
represenation of 1.3 is not exactly as it seems:

(13/10) asFloat
⇒ 1.3

(13/10) asFloat asFraction
⇒ 5854679515581645/45035996273704

3.5 Kernel-Text
Notably, this category contains classes Character, String and Symbol.
String instances are collections of Character instances.

Character. An individual character is written prefixed with a “$”, for
example: $A. It can be defined with the class side method numericValue:
or converted from an integer instance with the #asCharacter:

Character numericValue: 65 ⇒ $A

65 asCharacter ⇒ $A

There are class side methods for non printable characters: Character
tab, Character lf, etc.

As each string is a collection of characters, when iterating a string we can
use the Character instance methods:

'There are 12 apples.' select: [:c |c isDigit].
⇒ '12'

Example 3.13: Twelve apples

� �
Modify Example 3.13 to reject the numeric characters.
 	

Exercise 3.7: Select apples

String. String is a very large class, it comes with more than 200 methods.
It is useful to browse these method categories to see common ways to group
methods.

Chapter 3: Class, Model of Communicating Entities 46

Sometimes you may not see a category related to what you’re looking for
right away.� �

If you expect a method selector to start with a specific letter,
click-select the -- all -- method category, then move the cursor over
the pane listing the method names. Press this character, e.g. $f. This
will scroll the method pane to the first method name starting with an
“f”.
 	

Consider the case where you need to search for a substring, a string within
a string: when browsing the String class, search for method categories
named like finding... or accessing. There you find a family of findXXX
methods. Read the comments at the beginning of these methods:

findString: subString

"Answer the index of subString within the receiver, starting at

start. If the receiver does not contain subString, answer 0."

↑ self findString: subString startingAt: 1.

Or:

findString: key startingAt: start caseSensitive: caseSensitive

"Answer the index in this String at which the substring key first

occurs, at or beyond start. The match can be case-sensitive or

not. If no match is found, zero will be returned."

../..

Then experiment with the potentially interesting messages in a
workspace:

'I love apples' findString: 'love' ⇒ 3 "match starts at position 3"

'I love apples' findString: 'hate'
⇒ 0 "not found"

'We humans, we all love apples' findString: 'we'
⇒ 12

'We humans, we all love apples'

findString: 'we'

startingAt: 1

caseSensitive: false
⇒ 1

'we humans, we all love apples' findString: 'we'
⇒ 1

'we humans, we all love apples' findString: 'we' startingAt: 2
⇒ 12

Chapter 3: Class, Model of Communicating Entities 47

Following these paths will, most of the time, lead you toward the answer
you are looking for.

� �
We want to format a string of the form ’Joe bought XX apples

and YY oranges’ to the form ’Joe bought 5 apples and 4 oranges’. What
message should be used?
 	

Exercise 3.8: Format a string

3.6 Spacewar! States and Behaviors

3.6.1 The game states

After defining the classes involved in the game design, we now define several
states of these classes:

• A SpaceWar instance representing the game play needs to know about
the centralStar, the ships and the fired torpedoes.

• A CentralStar has a mass state. It is necessary to compute the gravity
force applied to a given ship.

• A SpaceShip instance knows about its name, its position coordinates,
its heading angle, its velocity vector, its fuel gauge, its count of the
available torpedoes, its mass and its acceleration engine boost.

• A Torpedo has position, velocity and lifeSpan states.

We need to explain the mathematical nature of these states, then discuss
their object representation in the instance variables of our classes.� �

In the following sections, to ease reading we will write “the
variable myVar is a String” instead of the correct but cumbersome
“the instance variable myVar is a reference to a String instance”.
 	

SpaceWar

This object is the entry into the game. We want a meaningful class name.
Its instance variables are the involved protagonists of the game:

• centralStar is the unique CentralStar of the game play. We need to
know about it to request its mass.

Chapter 3: Class, Model of Communicating Entities 48

• ships is a collection of the two player ships. It is an Array instance, its
size is fixed to two elements.

• torpedoes is a collection of the fired torpedoes in the game play. As
this quantity is variable, a dynamic OrderedCollection makes sense.

CentralStar

Its unique instance variable, mass, is a number, most likely an Integer.

SpaceShip

The space ship is the most complex object, some clarifications regarding its
variables are needed.

• name is a String.

• position is a 2D screen coordinate, a location. Smalltalk uses the
Point class to represent such objects. It understands many mathe-
matics operations as operations on vectors; very useful for mechanical
calculations.

A point is easily instantiated with the binary message #@ send to a num-
ber with another number as its argument: 100 @ 200 returns a Point
instance representing the coordinates (x;y) = (100;200).

The ship’s position is regularly recomputed according to the law of
the Galilean reference frame. The computation depends on the ship’s
velocity, it’s current engine boost and the gravity pull of the central
star.

• heading is an angle in radians, the direction where the ship nose is
pointing. It is therefore a Float number.

• velocity is the vector representing the instantaneous speed of the ship.
It is a Point instance.

• fuel is the gauge, as long as it is not zero, the player can ignite the ship’s
rocket engine to provide acceleration to move around and to counter the
central star’s gravity pull. It is an integer number.

• torpedoes is the quantity of available torpedoes the player can fire. It
is an Integer number.

• mass is an Integer representing the ship mass.

• acceleration is the intrinsic ship acceleration norm provided when the
ship’s rockets are ignited. It is therefore an Integer number.

A few words regarding the euclidean coordinates: the origin of our or-
thonormal frame is the central star, its first vector is oriented toward the
right of the screen, and the second one towards the top of the screen. This
choice eases the computation of the ship’s acceleration, velocity and position.
More on this below.

Chapter 3: Class, Model of Communicating Entities 49

Torpedo

A torpedo is launched or “fired” from a ship with an initial velocity related
to the ship velocity. Once the torpedo life span counter reaches zero, it self
destructs.

• position is a 2D screen coordinate, a Point instance. Unlike the ship
it does not accelerate based on the gravity pull of the central star.
Indeed, a torpedo does not come with a mass state. For our purposes it
is essentially zero. Its position over time only depends on the torpedo
velocity and its initial acceleration.

• velocity is a vector representing the instantaneous speed of the tor-
pedo. It is constant over the torpedo lifespan. Its direction matches the
ship heading when fired. Again velocity is kept as a Point instance.

• lifeSpan is an integer number counter, when it reaches zero the torpedo
self-destructs.

3.6.2 Instance variables

In the previous chapter, we explained how to define the four classes
SpaceWar, CentralStar, SpaceShip and Torpedo. In this section, we will
add to the these definitions the instance variables – states – discussed above.

To add the variables to the Torpedo class, from the Browser, select this
class. Next, add the variable names to the instanceVariableNames: key-
word, separated by one space character. Finally, save the updated class
definition with Ctrl-s shortcut:

Object subclass: #Torpedo

instanceVariableNames: 'position velocity lifeSpan'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

Example 3.14: Torpedo class with its instance variables

� �
Add the instance variables we discussed earlier to the SpaceWar,

CentralStar and SpaceShip classes.
 	
Exercise 3.9: Instance variables of the Spacewar! protagonists

3.6.3 Behaviors

Some of these states need to be accessed from other entities:

Chapter 3: Class, Model of Communicating Entities 50

• When initializing a space ship, we want to set its name with a keyword
message categorised as a setter: ship name: 'The needle'.

• To compute the gravity force applied to an object owning a mass, we
want to get its value with an unary message categorised as a getter:
star mass * ship mass.

To write these behaviors in the Browser, first select the class then the
method category you want – when none, select -- all --.

In the code pane below appears a method template:

messageSelectorAndArgumentNames

"comment stating purpose of message"

| temporary variable names |

statements

Example 3.15: Method template

It describes itself as:

1. Line 1. It is a mandatory method name, the same as the message.

2. Line 2. An optional comment surrounded by double quote.

3. Line 3. An optional list of variables local to the method, surrounded by
pipe characters.

4. Line 4. A subsequent list of message sendings and assignments.

The getter mass on SpaceShip is written as:

SpaceShip>>mass

↑ mass

The SpaceShip>> part is not valid code and should not be written in the
Browser. It is a text convention to inform the reader the subsequent method
is from the SpaceShip class.

� �
Write the SpaceShip getter messages for its position,

velocity and mass attributes.
 	
Exercise 3.10: SpaceShip getter message

Chapter 3: Class, Model of Communicating Entities 51

Some instance variables need to be set from another entity, so a setter
keyword message is necessary. To set the name of a space ship we add the
following method:

SpaceShip>>name: aString

name ← aString

The ← character is an assignment, it means the name instance variable
is bound to the aString object. To type in this symbol type _ then space,
Cuis-Smalltalk will turn it to left arrow symbol. Alternatively write name
:= aString. One might pronounce ← as “gets”.

Since name is an instance variable, each instance method knows to use
the box for the name. The meaning here is that we are placing the value of
the aString argument into the instance’s box called name.

Since each instance variable box can hold an object of any class, we like
to name the argument to show that we intend that the name variable should
hold a string, an instance of the String class.

� �
Ship position and velocity will need to be set at game start

up or when a ship jumps in hyperspace. Write the appropriate setters.
 	
Exercise 3.11: SpaceShip setter messages

Observe how we do not have a setter message for the space ship mass
attribute. Indeed, it does not make sense to change the mass of a ship from
another object. In fact, if we consider both player ships to be of equal mass,
we should remove the mass variable and edit the mass method to return a
literal number:

SpaceShip>>mass

↑ 1

Example 3.16: A method returning a constant

Controls

A space ship controlled by the player understands messages to adjust its
direction and acceleration3:

3 The velocity is a consequence of the accelerations applied to the space ship.

Chapter 3: Class, Model of Communicating Entities 52

Direction. The ship heading is controlled with the #left and #right
messages. The former increments the heading by 0.1 and the later decre-
ments it by 0.1.

� �
Write two methods named left and right to shift the ship

heading of 0.1 accordingly to the indications above.
 	
Exercise 3.12: Methods to control ship heading

Acceleration. When the #push message is sent to the ship, the engines
are ignited and an internal acceleration of 10 units of acceleration is applied
to the ship. When the #unpush message is sent, the acceleration stops.

� �
Write two methods named push and unpush to adjust the ship

inner acceleration accordingly to the indications above.
 	
Exercise 3.13: Methods to control ship acceleration

3.6.4 Initializing

When an instance is created, for example SpaceShip new, it is automatically
initialized: the message #initialize is sent to the newly created object and
its matching initialize instance side method is called.

The initializing process is useful to set the default values of the instance
variables. When we create a new space ship object we want to set its default
position, speed, acceleration:

SpaceShip>>initialize

super initialize.

heading ← Float halfPi.

velocity ← 0 @ 0.

position ← 100 @ 100.

acceleration ← 0

Example 3.17: Initialize the space ship

Chapter 3: Class, Model of Communicating Entities 53

In the method Example 3.17, observe the first line super initialize.
When a message is sent to super, it refers to the superclass of the class’s
method using super. So far, the SpaceShip parent class is Object, therefore
the Object>>initialize method is called first for initialization.

When created, a space ship is positioned to the top and right of the
central star. It has no velocity nor internal acceleration – only the gravity
pull of the central star. Its nose points in direction of the top of the game
display.

� �
How will your write the method to initialize the central star with

8000 units of mass?
 	
Exercise 3.14: Initialize central star

54

4 The Collection Way of Life

Simplicity does not precede complexity, but follows it.
—Alan Perlis

Since the concept’s introduction in the 70s, collections and their associ-
ated iterators are important programming elements of Smalltalk. Correctly
used, they improve both code compactness and code understanding; two
paradigms which may seem antagonistic. Since then, these innovations have
percolated into many popular programming languages.

4.1 String – a particular collection
The String class also inherits behavior from its ancestor classes. Indeed
String is a subclass of ArrayedCollection. The direct consequence is that
when searching for some specific behavior, you may need to explore the
parent classes too. The whole behavior of a class, defined in the class itself
and its parents is called its protocol.

Again the browser is helpful to explore a class protocol. You have two
options:

1. Explore the protocol. In the class pane of the browser, do ...select
String class → right mouse button → Browse protocol (p)... Alter-
natively, use the keyboard shortcut Ctrl-p.

Figure 4.1: Browse String protocol

Chapter 4: The Collection Way of Life 55

The new window is a protocol browser for the String class. At the left,
we see a hierarchy of the String’s ancestor classes. At the right are the
method selectors for strings and, in parenthesis, the class where they are
defined. Methods defined in class String itself are in bold characters.

Selecting one class there only shows the protocol starting from this class
down to the String class. If you select String in the left panel, you
only see methods defined in the String class itself.

In Figure 4.1, no specific class is selected, therefore the whole String
protocol is listed at the right. The method before: implemented in
SequenceableCollection is selected and its source code is displayed
on the large bottom pane.

2. Explore the hierarchy. In the class pane of the browser, do ...select
String class → right mouse button → Browse hierarchy (h)... Alter-
natively, use the keyboard shortcut Ctrl-h or the button hierarchy on
the system browser.

Figure 4.2: Browse the String hierarchy

The hierarchy browser is very like the system browser with only two
differences:

• At the far left, the class categories pane is absent,

• In the classes pane, the hierarchy of String is printed. It makes
easy to browse String parent and child classes.

The hierarchy browser is a general tool for exploration. Unlike the pro-
tocol browser, it does not display the entire protocol of a class. No inher-
ited methods are shown, only those defined directly in the selected class.
In Figure 4.2, the class SequenceableCollection is selected as well as its
method before:.

The before: method extracts from a collection the element before a
specified element. When inherited in String, those elements are Character
instances:

Chapter 4: The Collection Way of Life 56

'1 + 3i' before: $i
⇒ $3

Practice the tools and resolve the exercise below.

� �
Find the appropriate method to transform ’Hello My Friend’ into

’My Friend’.
 	
Exercise 4.1: Cut a string

Beware, some messages in the String protocol may obviously not work.
Observe below, the error is thrown on a Character instance:

'Hello My Friend' cos
⇒ MesageNotUnderstood: Character>>cos

If you look at implementors of cos, you can find that Collection expects
to apply cos to each member of a collection, hence a character is asked for
its cosine.

Symbol. A symbol is very like a string but it is unique and never du-
plicated. Two references to 'hello' might be to two or only one object
depending computational history. Two references to #hello are guarenteed
to always refer to the same object.

Symbols got their name because they are used as symbolic constants. You
already observed how in the book we wrote message selectors as a symbol.
We use symbols because each message name must uniquely index the code
for a method. You will use a symbol when you need to name something
uniquely.

In the example below, the strings are not identical once duplicated – copy-
ing a string always results in a new string – however symbols are identical
even when duplicated1:

'hello' == 'hello' copy
⇒ false

#hello == #hello copy
⇒ true

Now you know. Strings can be duplicated or changed, symbols can’t.

1 To be honest, copying a symbol just returns the original symbol.

Chapter 4: The Collection Way of Life 57

Symbols can contain space characters:

'hello my friend' asSymbol
⇒ #'hello my friend'

Symbol is a subclass of String and much of its behavior is inherited. As
we learn about Strings we are also learning quite a bit about symbols.

Note that many String methods are defined to return strings.

'hello my friend' class.
⇒ String

#'hello my friend' class.
⇒ Symbol

#'hello my friend' asCamelCase
⇒ 'helloMyFriend'

#'hello my friend' asCamelCase asSymbol
⇒ #helloMyFriend

4.2 Fun with variables
How a variable can be fun? With Cuis-Smalltalk, a variable is the name of
a box that holds a value – an object, that’s it!

A variable can hold a value of any class. The value is strongly typed (we
can always determine its Class), but the variable (box) is not restricted to
holding a value of a single type.

One important direct consequence is that the type of a variable – i.e. the
class of the referenced object – can change over time. Observe this example:

| a |

a ← 1 / 3.

a class
⇒ Fraction

a ← a + (2 / 3)
⇒ 1

a class
⇒ SmallInteger

The initial value of the variable a was a Fraction instance, after some
calculation it ends as a SmallInteger instance.

In fact to be honest, there is no such things as type, it is only referenced
objects which can mutate over time into other kind of object: a metal body
structure to which you add two wheels may become a bicycle, or a car if you
add four wheels.

Therefore, to declare a method variable we just name it at the beginning
of the script and surround it by pipe characters “|”.

Chapter 4: The Collection Way of Life 58

A variable always holds a value. Until we place a different value into a
variable, the variable holds the nil value, an instance of UndefinedObject.
When we say that a value is bound to a variable we mean that the named
box now holds that value.

So far we sent messages directly to objects, but we can send message to
a variable bound to an object too.

Any object responds to the message #printString.

| msg |

msg := 'hello world!'.

Transcript show: msg capitalized printString, ' is a kind of '.

Transcript show: msg class printString; newLine.

msg := 5.

Transcript show: msg printString, ' is a kind of '.

Transcript show: msg class printString; newLine.

� �
This ease of use has a drawback: when writing code to send a

message to a variable bound to an object, the system does not check
ahead of time that the object understands the message. Nevertheless
there is a procedure to catch this kind of situation when the message is
actually sent.
 	

4.3 Fun with collections
A Collection is a grouping of objects. Arrays and Lists are collections. We
already know a String is a collection; precisely a collection of characters.
Many kinds of Collection have similar behaviors.

An Array is a fixed size collection, and unlike a string it can contain any
kind of literal enclosed in #():

"array of numbers"

#(1 3 5 7 11 1.1)

"array of mixed literals"

#(1 'friend' $& 'al')

An Array is constructed directly using well formed literal elements. We
will get to the meaning of this last statement when we discuss details of the
Smalltalk language.

For now, just note that using non-literal expressions to construct an array
will not work as expected:

Chapter 4: The Collection Way of Life 59

#(1 2/3)
⇒ #(1 2 #/ 3)

Indeed, the $/ is interpreted as a literal symbol and we get basic com-
ponents of “2 / 3” but this text is not interpreted as a fraction. To get a
fraction inserted in the array, you use a run-time array or dynamic array,
whose elements are expressions separated by dots and surrounded with { }:

{1 . 2/3 . 7.5}
⇒ #(1 2/3 7.5)

With an array filled with numbers you can request information and arith-
metic operations:

#(1 2 3 4) size ⇒ 4

#(1 2 3 4) + 10 ⇒ #(11 12 13 14)

#(1 2 3 4) / 10 ⇒ #(1/10 1/5 3/10 2/5)

Mathematical operations work as well:

#(1 2 3 4) squared ⇒ #(1 4 9 16)

#(0 30 45 60) degreeCos
⇒ #(1.0 0.8660254037844386

0.7071067811865475 0.49999999999999994)

Basic statistical methods can be used directly on array of numbers:

#(7.5 3.5 8.9) mean ⇒ 6.633333333333333

#(7.5 3.5 8.9) range ⇒ 5.4

#(7.5 3.5 8.9) min ⇒ 3.5

#(7.5 3.5 8.9) max ⇒ 8.9

To get an array of natural numbers from 1 to 100, we use the keyword
message #to:

(1 to: 100) asArray
⇒ #(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

92 93 94 95 96 97 98 99 100)

In this line of code, the message #to: is sent to 1 with the argument 100.
It returns an interval object. The message #asArray sent to the interval
returns an array.

Chapter 4: The Collection Way of Life 60

� �
Create an array of integer numbers ranging from -80 to 50.
 	

Exercise 4.2: Negative integer numbers

The size of an array is fixed, it can not grow. An OrderedCollection
is a dynamic, ordered collection. It grows when adding element with the
#add: message:

| fibo |

fibo := OrderedCollection newFrom: #(1 1 2 3).

fibo add: 5;

add: 8;

add: 13;

add: 21.

fibo
⇒ an OrderedCollection(1 1 2 3 5 8 13 21)

Example 4.1: Dynamic size collection

Index access to the elements of a collection is done with a variety of
messages. The index naturally ranges from 1 to the collection size:

fibo at: 1 ⇒ 1

fibo at: 6 ⇒ 5

fibo last ⇒ 21

fibo indexOf: 2 ⇒ 3

fibo at: fibo size ⇒ 21

Playing with enumerators

A collection comes with a set of helpful methods named enumerators. Enu-
merators operate on each element of a collection.

Set operations between two collections are computed with the #union:,
#intersection: and #difference: messages.

Chapter 4: The Collection Way of Life 61

#(1 2 3 4 5) intersection: #(3 4 5 6 7)
⇒ #(3 4 5)

#(1 2 3 4 5) union: #(3 4 5 6 7)
⇒ a Set(5 4 3 2 7 1 6)

#(1 2 3 4 5) difference: #(3 4 5 6 7)
⇒ #(1 2)

Example 4.2: Set operations

� �
Construct the array of the numbers 1,...,24,76,...,100.
 	

Exercise 4.3: Hole in a set

Set operations work with any kind of object. Comparing objects deserves
its own section.

#(1 2 3 'e' 5) intersection: #(3.0 4 6 7 'e')
⇒ #(3 'e')

To select the prime numbers from 1 to 100, we use the #select: enumer-
ator. This message is sent to a collection, then it will select each element of
the collection returning true to a test condition:

(1 to: 100) select: [:n | n isPrime]
⇒ #(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71

73 79 83 89 97)

Example 4.3: Select prime numbers between 1 and 100

This example introduces the message #select: and block of code, a
primordial constituent element of the Cuis-Smalltalk model. A block of
code, delimited by square brackets, is a piece of code for later execution(s).
Let’s explain how this script is evaluated:

• (1 to: 100) is evaluated as an interval

• the block of code [:n | n isPrime] is instantiated (created)

• the message #select: is sent to the interval with the block of code as
the argument

• in the select: method, for each integer of the interval, the block of

Chapter 4: The Collection Way of Life 62

code is invoked with its parameter n set to the integer value. A block
parameter starts with a colon, “:”, and is an ordinary identifer2. Then,
each time n isPrime evaluates to true, the n value is added to a new
collection answered when the select: method finished testing each el-
ement of the collection.

A block of code can be saved in a variable, passed as a parameter, and
can be used multiple times.

| add2 |

add2 := [:n| n + 2].

{ add2 value: 2. add2 value: 7 }.
⇒ #(4 9)

Enumerators implement tremendously powerful ways to process collec-
tions without the need of index. By this we mean that they are simple to
get right. We like simple!

To get an idea of how useful enumerators are, take a browse at the
Collection class in the method category enumerating.

� �
Select the odd number between -20 and 45.
 	

Exercise 4.4: Odd integers

You want to know the number of prime numbers under 100. Just send the
message #size to the answered collection at Example 4.3. The parenthesis
are mandatory to ensure #size is sent last to the resulting collection:

((1 to: 100) select: [:n | n isPrime]) size
⇒ 25

Example 4.4: Quantity of prime numbers between 1 and 100

For more clarity, we use a variable named primeNumbers to remember
about the prime numbers list we build:

| primeNumbers |

primeNumbers := (1 to: 100) select: [:n | n isPrime].

2 An identifier is just a word that starts in a lower case letter and consists of upper and
lower case letters and decimal digits. All variable names are identifiers

Chapter 4: The Collection Way of Life 63

primeNumbers size

� �
Modify Example 4.4 to calculate the number of prime numbers

between 101 and 200.
 	
Exercise 4.5: Number of prime number between 101 and 200

� �
Build the list of the multiples to 7 below 100.
 	

Exercise 4.6: Multiple of 7

� �
Build a collection of the odd integers in [1 ; 100] which are not

prime.
 	
Exercise 4.7: Odd and non prime integers

A sister enumerator to #select: is #collect:. It returns a new collection
of the same size, with each element transformed by a block of code. When
searching perfect cubic roots, it is useful to know about some cubes:

(1 to: 10) collect: [:n | n cubed]
⇒ #(1 8 27 64 125 216 343 512 729 1000)

Example 4.5: Collect cubes

The collected elements can be of a different type. Below, a string is
enumerated and integers are collected:

'Bonjour' collect: [:c | c asciiValue]
⇒ #(66 111 110 106 111 117 114)

Chapter 4: The Collection Way of Life 64

We can shift the ascii value, convert back to character then collect in a
new string. It is a simple cipher:

'Bonjour' collect: [:c | (c asciiValue + 1) asCharacter]
⇒ 'Cpokpvs'

Example 4.6: Simple cipher

� �
Write the script to decode cipher ’Zpvs!bsf !cptt’, it was encoded

with Example 4.6.
 	
Exercise 4.8: Cipher decode

The Caesar’s cipher is based on shifting letter to the right in the alphabet
order. The method is named after Julius Caesar, who used it in his private
correspondence with a shift of 3.

� �
Write a script to collect the alphabet upper letters representing

the Caesar’s cipher. The expected answers is #($D $E $F $G $H $I $J
$K $L $M $N $O $P $Q $R $S $T $U $V $W $X $Y $Z $A $B $C).
 	

Exercise 4.9: Alphabet Caesar’s cipher

Once you get the alphabet cipher right, you can encode your first message:

� �
Encode the phrase ’SMALLTALKEXPRESSION’.
 	

Exercise 4.10: Encode with Caesar’s cipher

And decode message:

Chapter 4: The Collection Way of Life 65

� �
Decode this famous quotation attributed to Julius Caesar ’DO-

HDMDFWDHVW’.
 	
Exercise 4.11: Decode with Caesar’s cipher

Fun with loops

Collection can be iterated with traditional loops: there is a whole family of
repeat, while and for loops.

A simple for loop between two integer values is written with the keyword
message #to:do:, the last argument is a block of code executed for each
index:

| sequence |

sequence := OrderedCollection new.

1 to: 10 do: [:k | sequence add: 1 / k].

sequence
⇒ an OrderedCollection(1 1/2 1/3 1/4 1/5 1/6 1/7 1/8 1/9 1/10)

Example 4.7: A for loop

A collect writes more concisely, though:

(1 to: 10) collect: [:k | 1 / k]

To step with a different value than 1, a third numeric argument is inserted:

1 to: 10 by: 0.5 do: [:k | sequence add: 1 / k]

A repeated loop without index or any collection is written with the
#timesRepeat: message send to an integer:

| fibo |

fibo := OrderedCollection newFrom: #(1 1).

10 timesRepeat: [

fibo add: (fibo last + fibo atLast: 2)].

fibo
⇒ an OrderedCollection(1 1 2 3 5 8 13 21 34 55 89 144)

Example 4.8: A repeat loop

Chapter 4: The Collection Way of Life 66

The quotient of consecutive Fibonacci terms converge toward the golden
value:

fibo pairsDo: [:i :j |

Transcript show: (j / i) asFloat ; cr]
⇒ 1.0
⇒ 1.5
⇒ 1.6
⇒ 1.6153846153846154
⇒ 1.6176470588235294
⇒ 1.6179775280898876

4.4 Collections detailed
The Collections- class categories are the most prolific, there are 7 of them
gathering 46 classes.

The category Collections-Abstract groups classes which are said to be
abstract. An abstract class cannot be instantiated, its behavior is declared
but not completely implemented. It is the responsibility of its subclasses to
implement the missing part of the behavior.

An abstract class is useful to establish a set of polymorphic methods
which each of its concrete subclasses are expected to specialize. This captures
and communicates our intent.

Observe how the important do: method is declared but not implemented:

Collection>>do: aBlock

"Evaluate aBlock with each of the receiver's elements as the argument."

self subclassResponsibility

Then observe how two different Collection subclasses implement it:

OrderedCollection>>do: aBlock

firstIndex to: lastIndex do: [:index |

aBlock value: (array at: index)]

and:

Dictionary>>do: aBlock

super do: [:assoc | aBlock value: assoc value]

Two important groups of collections must be distinguished: collection
with a fixed size and collection with a variable size.

Collection of fixed size. Such collections are gathered in the category
Collections-Arrayed. The most notable one is Array, its size – the number

Chapter 4: The Collection Way of Life 67

of elements it can hold – is set when creating the instance. Once instantiated,
you can neither add nor delete elements to an array.

There are different ways to create Array instance:

array1 := #(2 'Apple' $@ 4) "create at compile time"

array1b := {2 . 'Apple' . 2@1 . 1/3 } "created a execution time"

array2 := Array with: 2 with: 'Apple' with: 2@3 with: 1/3.

array3 := Array ofSize: 4 "an empty array with a 4 element capacity"

Example 4.9: Collection with a fixed size

Array array1 and array1b are bit different. The former one is created
and filled with its contents at compile time of the code, the consequence is
it can only be filled with literal elements as integer, float, string. The later
one is created at execution time of the code, it can be filled with elements
instantiated at the execution time as Fraction or Point instances.

You can access elements with an important variety of messages:

array1 first ⇒ 2

array1 second ⇒ 'Apple'

array1 third ⇒ $@

array1 fourth ⇒ 4

array1 last ⇒ 4

array1 at: 2 ⇒ 'Apple'

array2 at: 3 ⇒ 2@3

array2 swap: 2 with: 4 ⇒ #(2 1/3 2@3 'Apple')

array1 at: 2 put: 'Orange'; yourself ⇒ #(2 'Orange' $@ 4)

array1 indexOf: 'Apple' ⇒ 2

Example 4.10: Collection access to elements

Use the System Browser to discover alternative way to access elements of
a collection.

� �
What is the appropriate message to access the first 2 elements

of the array1 collection?
 	
Exercise 4.12: Access part of a collection

You can’t add or remove an element, though:

Chapter 4: The Collection Way of Life 68

array1 add: 'Orange'
⇒ Error: 'This message is not appropriate for this object'

array1 remove: 'Apple'
⇒ Error: 'This message is not appropriate for this object'

Nevertheless, it is possible to fill at once an array:

� �
How will you fill at once array1 with ’kiwi’?
 	

Exercise 4.13: Fill an array

Collection of variable size. Such collection are gathered in several
class categories: Collections-Unordered, Collections-Sequenceable,
etc. They represent the most common collections.

OrderedCollection is a notable one. Its elements are ordered: elements
are added one after the other in sequence3. Its size is variable depending on
added or removed elements.

coll1 := {2 . 'Apple' . 2@1 . 1/3 } asOrderedCollection

coll2 := OrderedCollection with: 2 with: 'Apple' with: 2@1 with: 1/3

coll3 := OrderedCollection ofSize: 4

Example 4.11: Collection with a variable size

The access to elements is identical to an Array instance, but dynamic
collections allow you to add and remove elements:

coll1 add: 'Orange'; yourself
⇒ an OrderedCollection(2 'Apple' 2@1 1/3 'Orange')

coll1 remove: 2@1; yourself
⇒ an OrderedCollection(2 'Apple' 1/3)

Example 4.12: Adding, removing element from a dynamic array

3 Of course you can insert an element between two elements. However LinkList instance
are more efficient for this use case.

Chapter 4: The Collection Way of Life 69

� �
How to add ’Orange’ after ’Apple’ in coll1?
 	

Exercise 4.14: Add an element after

Set. Set is an unordered collection without duplicated elements. The
order of the element is not guaranteed, though. Observe how pi is the first
element of the set:

set := Set new.

set add: 1; add: Float pi; yourself
⇒ a Set(3.141592653589793 1)

Example 4.13: Set collection

Non duplicate are guaranteed at best, even with number of different types.
Observe how 1, 3/3 and 1.0 are considered equal and not duplicated in the
set:

set := Set new.

set add: 1; add: Float pi; add: 3/3; add: 1/3; add: 1.0; yourself
⇒ a Set(1/3 3.141592653589793 1)

Example 4.14: Set, without duplicates

A very handy way to create a Set instance, or any other collection, is to
create a dynamic array and convert it with the #asSet message:

{1 . Float pi . 3/3 . 1/3 . 1.0} asSet
⇒ a Set(3.141592653589793 1/3 1)

Example 4.15: Convert dynamic array

Observe the alternate conversion messages:

{1 . Float pi . 3/3 . 1/3 . 1.0} asOrderedCollection
⇒ an OrderedCollection(1 3.141592653589793 1 1/3 1.0)

{1 . Float pi . 3/3 . 1/3 . 1.0} asSortedCollection
⇒ a SortedCollection(1/3 1 1 1.0 3.141592653589793)

Chapter 4: The Collection Way of Life 70

To uniquely collect the divisors list of 30 and 45 (not the common divi-
sors):

Set new

addAll: #(1 2 3 5 6 10 15 30) ;

addAll: #(1 3 5 9 15 45) ;

yourself.
⇒ a Set(5 10 15 1 6 30 45 2 3 9)

� �
How will you collect the letters in the sentences ’buenos d́ıas’

and ’bonjour’?
 	
Exercise 4.15: Letters

Dictionary. A dictionary is a list of associations between a key and an
object. Of course a key is an object, but it must respond to equality tests.
Most of the time, symbols are used as keys.

To compile a list of colors:

| colors |

colors := Dictionary new.

colors

add: #red -> Color red;

add: #blue -> Color blue;

add: #green -> Color green

Example 4.16: Dictionary of colors

There are shorter descriptions:

colors := Dictionary newFrom:

{#red -> Color red . #blue -> Color blue . #green -> Color green}.

colors := {#red -> Color red . #blue -> Color blue .

#green -> Color green} asDictionary

You access color by symbols:

colors at: #blue
⇒ Color blue

colors at: #blue put: Color blue darker

colors at: #yellow ifAbsentPut: Color yellow

Chapter 4: The Collection Way of Life 71

⇒ association `#yellow -> Colors yellow` added to the dictionary

There are different way to access a dictionary contents:

colors keys.
⇒ #(#red #green #blue)

colors keyAtValue: Color green
⇒ #green

Beware. The classic enumerators iterate the values of the dictionary:

colors do: [:value | Transcript show: value; space]
⇒ (Color r: 1.000 g: 1.000 b: 0.078) (Color r: 0.898 g: 0.000 b: 0.000)...

Sometimes, you really need to iterated the whole key-value association:

colors associationsDo: [:assoc |

Transcript show: assoc key; space; assoc value; cr]

There are other variants to explore by yourself.

� �
With an appropriate enumerator, how will you edit the contents

of the colors dictionary to replace its values with a nicely capitalized
string?
 	

Exercise 4.16: Color by name

There are many more collections to explore. You now know enough to ex-
plore and to search by yourself with the System Browser, and to experiment
with the Workspace.

4.5 SpaceWar! collections

4.5.1 Instantiate collections

Whenever you need to deal with more than one element of the same nature
– instances of the same class – it is a clue to use a collection to hold them.
Moreover, when these elements are of fixed quantity, it indicates more pre-
cisely you want to use an Array instance. An Array is a collection of fixed
size. It can not grow nor shrink.

Chapter 4: The Collection Way of Life 72

When this quantity is variable, you want to use an OrderedCollection
instance. It is a collection of variable size, it can grow or shrink.

SpaceWar! is a two-players game, there will be always two players and
two space ships. We use an Array instance to keep reference of each space
ship.

Each player can fire several torpedoes; therefore the game play holds
zero or more torpedoes – hundreds if we decide so. The torpedoes quantity
is variable, we want to use an OrdredCollection instance to keep track of
them.

In the SpaceWar class, we already defined two instance variables ships
and torpedoes. Now, we want an initializeActors method to set up
the game with the involved actors – central star, ships, etc. Part of this
initialization is to create the necessary collections.

See below an incomplete implementation of this method:

SpaceWar>>initializeActors

centralStar ← CentralStar new.

../..

ships first

color: Color green;

position: 200 @ 200.

ships second

color: Color red;

position: -200 @ -200

Example 4.17: Incomplete game initialization

� �
The example above does not show the creation of the ships and

torpedoes collections. Replace “../..” with lines of code where these
collections are instantiated and if necessary populated.
 	

Exercise 4.17: Collections to hold the ships and torpedoes

4.5.2 Collections in action

The space ship and the torpedo objects are responsible of their internal
states. They understand the #update: message to recompute their position
according to the mechanical laws.

Chapter 4: The Collection Way of Life 73

A fired torpedo has a constant velocity, no external forces is applied to
it. Its position is linearly updated according to the time elapsed. The t
parameter in the #update: message is this time interval.

Torpedo>>update: t

"Update the torpedo position"

position ← velocity * t + position.

../..

Example 4.18: Torpedo mechanics

A space ship is put under the strain of the star’s gravity pull and the
acceleration of its engines. Therefore its velocity and position change ac-
cordingly to the mechanical laws of physics.

SpaceShip>>update: t

"Update the ship position and velocity"

| ai ag newVelocity t |

"acceleration vectors"

ai ← acceleration * self direction.

ag ← self gravity.

newVelocity ← (ai + ag) * t + velocity.

position ← (0.5 * (ai + ag) * t squared) + (velocity * t) + position.

velocity ← newVelocity.

../..

Example 4.19: Space ship mechanics

� �
Remember that Smalltalk does not follow the mathematics prece-

dence of arithmetic operators. These are seen as ordinary binary mes-
sages which are evaluated from the left to the right when there is no
parenthesis. For example, in the code fragment ...(velocity * t)...,
the parenthesis are mandatory to get the expected computation.
 	

The game play is the responsibility of a SpaceWar instance. At a regular
interval of time, it refreshes the states of the game actors. A stepAt:method
is called at a regular interval of time determined by the stepTime method:

74

SpaceWar>>stepTime

"millisecond"

↑ 20

SpaceWar>>stepAt: millisecondSinceLast

../..

ships do: [:each | each unpush].

../..

Example 4.20: Regular refresh of the game play

In the stepAt: method, we intentionally left out the details to update the
ship and torpedoe positions. Note: each ship is sent regularly an #unpush
message to reset its previous #push acceleration.

� �
Replace the two lines “../..” with code to update the ships and

the torpedoes positions and velocities.
 	
Exercise 4.18: Update all ships and torpedoes

Among other things, the game play handles the collisions between the
various protagonists. Enumerators are very handy for this.

Ships are hold in array of size 2, we just iterate it with a #do: message
and a dedicated block of code:

SpaceWar>>collisionsShipsStar

ships do: [:aShip |

(aShip morphPosition dist: centralStar morphPosition) < 20 ifTrue: [

aShip flashWith: Color red.

self teleport: aShip]

]

Example 4.21: Collision between the ships and the Sun

75

5 Control Flow Messaging

Fools ignore complexity. Pragmatists suffer it. Some can avoid it.
Geniuses remove it.

—Alan Perlis

Cuis-Smalltalk syntax is minimal. Essentially there is syntax only for
sending messages (i.e., expressions) . Expressions are built up from a very
small number of primitive elements. There are only 6 keywords, and there is
no syntax for control structures or for declaring new classes. Instead, nearly
everything is achieved by sending messages to objects. For instance, instead
of an if-then-else control structure, Smalltalk sends messages like #ifTrue:
to Boolean objects. As we already know, new (sub)classes are created by
sending a message to their superclass.

5.1 Syntactic elements
Expressions are composed of the following building blocks:

1. six reserved keywords, or pseudo-variables: self, super, nil, true,
false, and thisContext,

2. constant expressions for literal objects including numbers, characters,
strings, symbols and arrays,

3. variable declarations

4. assignments,

5. block closures,

6. messages.

5.2 Pseudo-variables
In Smalltalk, there are 6 reserved keywords, or pseudo-variables:

nil, true, false, self, super, and thisContext.

They are called pseudo-variables because they are predefined and cannot
be assigned to. true, false, and nil are constants while the values of self,
super, and thisContext vary dynamically as code is executed.

• true and false are the unique instances of the Boolean classes True
and False.

• self always refers to the receiver of the currently executing method.

Chapter 5: Control Flow Messaging 76

• super also refers to the receiver of the current method, but when you
send a message to super, the method-lookup changes so that it starts
from the superclass of the class containing the method that uses super.

• nil is the undefined object. It is the unique instance of the class
UndefinedObject. Instance variables, class variables and local vari-
ables are initialized to nil.

• thisContext is a pseudo-variable that represents the top frame of the
run-time stack. In other words, it represents the currently executing
MethodContext or BlockContext. thisContext is normally not of in-
terest to most programmers, but it is essential for implementing develop-
ment tools like the Debugger and it is also used to implement exception
handling and continuations.

5.3 Method syntax
Whereas expressions may be evaluated anywhere in Cuis-Smalltalk (for ex-
ample in a workspace, in a debugger, or in a browser), methods are normally
defined in the System Browser window or in the Debugger. Methods can
also be filed in from an external medium, but this is not the usual way to
program in Cuis-Smalltalk.

Programs are developed one method at a time, in the context of a given
class. A class is defined by sending a message to an existing class, asking
it to create a subclass, so there is no special syntax required for defining
classes. We are already farmiliar with this from previous examples.

Let’s take a another look to the method syntax when control flow is
involved – our first explanation was Section 3.6 [Spacewar! States and Be-
haviors], page 47).

Here is the method keyStroke: in the class SpaceWar.

SpaceWar>>keyStroke: event

"Check for any keyboard stroke, and take action accordingly"

| key |

key ← event keyCharacter.

key = Character arrowUp ifTrue: [↑ ships first push].

key = Character arrowRight ifTrue: [↑ ships first right].

key = Character arrowLeft ifTrue: [↑ ships first left].

key = Character arrowDown ifTrue: [↑ ships first fireTorpedo]

Example 5.1: SpaceWar! key stroke

Syntactically, a method consists of:

• the method pattern, containing the name (i.e., keyStroke:) and any
arguments. Here event is a KeyboardEvent,

• comments (these may occur anywhere, but the convention is to put one

Chapter 5: Control Flow Messaging 77

at the top that explains what the method does),

• declarations of local variables (i.e., key),

• and any number of expressions separated by dots; here there are 5.

The evaluation of any expression preceded by a ↑ (typed as ^) will cause
the method to exit at that point, returning the value of that expression.
A method that terminates without explicitly returning the value of some
expression will always return the current value of self.

Arguments and local variables should always start with lower case letters.
Names starting with upper-case letters are assumed to be global variables.
Class names, like Character, for example, are simply global variables refer-
ring to the object representing that class.

As you might suspect from Example 2.2, Smalltalk allClasses size
just sends the #allClasses method to a dictionary named Smalltalk. As
with any other object, you can inspect this dictionary. You can note a case of
self-reference here: the value of Smalltalk at: #Smalltalk is Smalltalk.

5.4 Block syntax
Blocks provide a mechanism to defer the evaluation of expressions. A block
is essentially an anonymous function. A block is evaluated by sending it the
message #value. The block answers the value of the last expression in its
body, unless there is an explicit return (with ↑), in which case it returns the
value of the subsequent expression).

[1 + 2] value
⇒ 3

Blocks may take parameters, each of which is declared with a leading
colon. A vertical bar separates the parameter declaration(s) from the body
of the block. To evaluate a block with one parameter, you must send it the
message #value: with one argument. A two-parameter block must be sent
#value:value:, and so on, up to 4 arguments:

[:x | 1 + x] value: 2
⇒ 3

[:x :y | x + y] value: 1 value: 2
⇒ 3

If you have a block with more than four parameters, you must use
#valueWithArguments: and pass the arguments in an array. (A block with
a large number of parameters is often a sign of a design problem.)

Chapter 5: Control Flow Messaging 78

Blocks may also declare local variables, which are surrounded by vertical
bars, just like local variable declarations in a method. Locals are declared
after any arguments:

[:x :y | | z | z ← x + y. z] value: 1 value: 2
⇒ 3

Blocks can refer to variables of the surrounding environment. Blocks
are said to “close over” their lexical environment, which is a fancy way to
say that they remember and refer to variables in their surrounding lexical
context – those apparent in their enclosing text.

The following block refers to the variable x of its enclosing environment:

|x|

x ← 1.

[:y | x + y] value: 2
⇒ 3

Blocks are instances of the class BlockClosure. This means that they
are objects, so they can be assigned to variables and passed as arguments
just like any other object.

Consider the example below to compute the divisors of an integer:

| n m |

n ← 60.

m ← 45.

(1 to: n) select: [:d | n \ d = 0].

"⇒ #(1 2 3 4 5 6 10 12 15 20 30 60)"

(1 to: m) select: [:d | m \ d = 0]

"⇒ #(1 3 5 9 15 45)"

Example 5.2: Compute divisors

The problem with this example is the code duplication in the divisor
computation. We can avoid duplication with a dedicated block doing the
computation and assigning it to a variable:

� �
How will you rewrite Example 5.2 to avoid code duplication?
 	

Exercise 5.1: Block to compute divisors

Chapter 5: Control Flow Messaging 79

The SpaceWar>>teleport:method contains a nice example using a block
to avoid code duplication to generate random abscissa and ordinate coordi-
nates. Each time a new coordinate is needed, the message #value is sent to
the block of code:

SpaceWar>>teleport: aShip

"Teleport a ship at a random location"

| area randomCoordinate |

aShip resupply.

area ← self morphLocalBounds insetBy: 20.

randomCoordinate ← [(area left to: area right) atRandom].

aShip

velocity: 0 @ 0;

morphPosition: randomCoordinate value @ randomCoordinate value

Example 5.3: teleport: method

5.5 Control flow with block and message
Deciding to send this message instead of that one is called control flow –
controlling the flow of a computation. Smalltalk offers no special constructs
for control flow. Decision logic is expressed by sending messages to booleans,
numbers and collections with blocks as arguments.

Test

Conditionals are expressed by sending one of the messages #ifTrue:,
#ifFalse: or #ifTrue:ifFalse: to the result of a boolean expression:

(17 * 13 > 220)

ifTrue: ['bigger']

ifFalse: ['smaller']
⇒ 'bigger'

The class Boolean offers a fascinating insight into how much of the
Smalltalk language has been pushed into the class library. Boolean is the
abstract superclass of the Singleton classes True and False1.

Most of the behaviour of Boolean instances can be understood by consid-
ering the method ifTrue:ifFalse:, which takes two blocks as arguments:

(4 factorial > 20) ifTrue: ['bigger'] ifFalse: ['smaller']
⇒ 'bigger'

1 A singleton class is designed to have only one instance. Each of True and False classes
has one instance, the values true and false.

Chapter 5: Control Flow Messaging 80

The method is abstract in Boolean. It is implemented in its concrete
subclasses True and False:

True>>ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

↑ trueAlternativeBlock value

False>>ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

↑ falseAlternativeBlock value

Example 5.4: Implementations of ifTrue:ifFalse:

In fact, this is the essence of OOP: when a message is sent to an object,
the object itself determines which method will be used to respond. In this
case an instance of True simply evaluates the true alternative, while an
instance of False evaluates the false alternative. All the abstract Boolean
methods are implemented in this way for True and False. Look at another
example:

True>>not

"Negation----answer false since the receiver is true."

↑ false

Example 5.5: Implementing negation

Booleans offer several useful convenience methods, such as ifTrue:,
ifFalse:, ifFalse:ifTrue:. You also have the choice between eager and
lazy conjunctions and disjunctions:

(1 > 2) & (3 < 4)
⇒ false "must evaluate both sides"

(1 > 2) and: [3 < 4]
⇒ false "only evaluate receiver"

(1 > 2) and: [(1 / 0) > 0]
⇒ false "argument block is never evaluated, so no exception"

In the first example, both Boolean subexpressions are evaluated, since
& takes a Boolean argument. In the second and third examples, only the
first is evaluated, since and: expects a Block as its argument. The Block is
evaluated only if the first argument is true.

Chapter 5: Control Flow Messaging 81

� �
Try to imagine how and: and or: are implemented.
 	

Exercise 5.2: Implementing and: and or:

In the Example 5.1 at the beginning of this chapter, there are 4 control
flow #ifTrue: messages. Each argument is a block of code and when eval-
uated, it explicitly returns an expression, therefore interrupting the method
execution.

In the code fragment of Example 5.6 below, we test if a ship is lost in
deep space. It depends on two conditions:

1. the ship is out of the game play area, tested with the #isInOuterSpace
message,

2. the ship takes the direction of deep space, tested with the
#isGoingOuterSpace message.

Of course, the condition #2 is only tested when condition #1 is true.

"Are we out of screen?

If so we move the mobile to the other corner

and slow it down by a factor of 2"

(self isInOuterSpace and: [self isGoingOuterSpace])

ifTrue: [

velocity ← velocity / 2.

self morphPosition: self morphPosition negated]

Example 5.6: Ship lost in space

Loop

Loops are typically expressed by sending messages to blocks, integers or
collections. Since the exit condition for a loop may be repeatedly evaluated,
it should be a block rather than a boolean value. Here is an example of a
very procedural loop:

n ← 1.

[n < 1000] whileTrue: [n ← n * 2].

n ⇒ 1024

#whileFalse: reverses the exit condition:

Chapter 5: Control Flow Messaging 82

n ← 1.

[n > 1000] whileFalse: [n ← n * 2].

n ⇒ 1024

You can check all the alternatives in the controlling method category
of the class BlockClosure.

#timesRepeat: offers a simple way to implement a fixed iteration:

n ← 1.

10 timesRepeat: [n ← n * 2].

n ⇒ 1024

We can also send the message #to:do: to a number which then acts as
the initial value of a loop counter. The two arguments are the upper bound,
and a block that takes the current value of the loop counter as its argument:

result ← String new.

1 to: 10 do: [:n | result ← result, n printString, ' '].

result ⇒ '1 2 3 4 5 6 7 8 9 10 '

You can check all the alternatives in the intervals method category of
the class Number.� �

If the exit condition of method like whileTrue: is never satisfied,
you may have implemented an infinite loop. Just type Cmd-period to
get the Debugger.
 	

5.6 Spacewar!’s methods
You are already acquainted to the writing of simple methods for the Space-
war! game. We will write some more and learn how to categorize them.

5.6.1 Initializing the game play

We want to add the initialize method to our SpaceWar class. Of course
we need to use the System Browser: ...World menu→ Open...→ Browser...

As a reminder, proceed as follows (if necessary observe Figure 2.1):

1. In the Class Category pane at the far left, scroll down to the Spacewar!
category, then select it.

2. In the Class pane, select the class SpaceWar.

3. Below, click the instance button to expose the instance side methods
of the SpaceWar class. It is the default behavior of the browser anyway,

Chapter 5: Control Flow Messaging 83

so you can skip this step as long as you have not clicked on the class
button.

4. In the Method Category pane, select the category -- all --. A method
source code template shows up in the pane below:

messageSelectorAndArgumentNames

"comment stating purpose of message"

| temporary variable names |

statements

The template comes in four lines: the method name, a comment, local
variable declaration and statements. You can select all and delete it or
edit each line of the template as needed.

In our case, we select it all and replace it with the
SpaceWar>>initialize source code:

SpaceWar>>initialize

"We want to capture keyboard and mouse events,

start the game loop(step) and initialize the actors."

super initialize.

color ← self defaultColor.

self setProperty: #'handlesKeyboard' toValue: true.

self setProperty: #'handlesMouseOver:' toValue: true.

self startSteppingStepTime: self stepTime.

self initializeActors

Example 5.7: Initialize SpaceWar

5. Once edited, save-it with Ctrl-s or ...right click → Accept (s)...

The newly created method shows up in the Method pane. You can get
it categorized automatically too: over the Method Category ...right click →
categorize all uncategorized (c)..

� �
In the SpaceWar class, add the teleport: method as defined in

Example 5.3 then categorize it in the events method category.
 	
Exercise 5.3: Categorize a method

5.6.2 Space ship controls

In a previous chapter, you wrote as an exercise simple implementation of
the [control ship methods], page 51. The definitive control methods of the
SpaceShip class are rewritten as:

Chapter 5: Control Flow Messaging 84

SpaceShip>>push

"Init an acceleration boost"

fuel isZero ifTrue: [↑ self].

fuel ← fuel - 1.

acceleration ← 50

SpaceShip>>unpush

"Stop the acceleration boost"

acceleration ← 0

SpaceShip>>right

"Rotate the ship to its right"

self rotateBy: 0.1

SpaceShip>>left

"Rotate the ship to its left"

self rotateBy: -0.1

Example 5.8: Ship controls

� �
Categorize the control methods in a newly created method cate-

gory named control.
 	
Exercise 5.4: Categorize control methods

Control will not be complete without the method to fire a torpedo. It is
more complex to correctly initialize a torpedo. This is because a space ship
is typically in motion, and in addition its heading and velocity are changing
frequently. Therefore the torpedo must be set up according to the current
space ship position, heading, and velocity before being fired.

Chapter 5: Control Flow Messaging 85

SpaceShip>>fireTorpedo

"Fire a torpedo in the direction of

the ship heading with its velocity"

| torpedo |

torpedoes isZero ifTrue: [↑ self].

torpedoes ← torpedoes - 1.

torpedo ← Torpedo new.

torpedo

morphPosition: self morphPosition + self nose;

rotation: location radians;

velocity: velocity;

color: color muchLighter.

owner addTorpedo: torpedo

Example 5.9: Firing a torpedo from a space ship in motion

Figure 5.1: Spacewar! torpedoes around

5.6.3 Collisions

In a previous chapter we gave a small taste of the collision detection code
between the space ships and the central star. It relies on iterator, block of
code and control flow.

86

However we have other scenarios as ship-ship, torpedo-Sun and torpedo-
ship collisions.

� �
How will you write the method to detect the collision between the

two ships and take action accordingly? (Adapt from Example 4.21).
 	
Exercise 5.5: Ships collision

The detection between the two ships and the possible numerous torpedoes
required two enumerators with nested blocks of code:

SpaceWar>>collisionsShipsTorpedoes

ships do: [:aShip |

torpedoes do: [:aTorpedo |

(aShip morphPosition dist: aTorpedo morphPosition) < 15 ifTrue: [

aShip flashWith: Color red.

aTorpedo flashWith: Color orange.

self destroyTorpedo: aTorpedo.

self teleport: aShip]

]

]

Example 5.10: Collision between the ships and the torpedoes

The last torpedo-Sun scenario collision is left as an exercise for you.

� �
Write the method to detect the collisions between the torpe-

does and the central star and take action accordingly. (Adapt from
Example 4.21 and Example 5.10.)
 	

Exercise 5.6: Collision between the torpedoes and the Sun

87

6 Visual with Morph

Morphic is a user interface framework that makes it easy and fun
to build lively interactive user interfaces.

—John Maloney

What would we expect if we asked for good support for building GUIs in
a programming system?

All modern computers (and phones, etc) have high resolution color dis-
plays. Any software running on them, that is accessible to a user, needs to
show stuff on that Display.

Conventional UI managers (that is, Operating Systems and Web
Browsers) started by including only the most basic GUI elements first:
basic text editors, buttons, simple lists, scrolling for large content, and
(usually) multiple resizeable overlapping windows. Anything else needs to
be handled via additional libraries. While there are libraries for handling
richer content (D3.js and Matplotlib are examples), the result is not
consistent, neither for developers nor for users.

Cuis-Smalltalk takes a different approach, pioneered by Smalltalk-80 and
especially Self. We will get into detail in the next chapter, The Fundamentals
of Morph. For now, let’s deal with Morphs directly.

We take the high quality Display for granted, as well as a mouse, finger
or other pointing device. And we build on the objective of providing ample
possibilities for GUIs both in existing, and in novel styles and designs yet to
be invented. Additionally, in the usual Smalltalk way, all the framework code
is available for study and modification. There are no third party libraries.
Only the lowest level code is precompiled, but that still can be overriden or
changed.

Therefore every object you see in Cuis-Smalltalk is a Morph or is composed
of Morphs. Basically, a Morph is an object with state and behavior that can
also depict itself on a computer display screen.

Because Morphs are useful, when you look at class Morph in a Hierarchy
Browser you will see a large number of methods and many, many subclasses.
But the basic ideas are quite simple.

Chapter 6: Visual with Morph 88

6.1 Installing a Package
This chapter will require you to install the package Morphic-Widgets-
Extras. To fetch this package from the web, you have two options:

1. Grab the file Morphic-Widgets-Extras.pck.st and save it in the same
folder as your Cuis-Smalltalk image file.

2. In the Cuis-Smalltalk image folder, clone its Git repository:

git clone https://github.com/Cuis-Smalltalk/Morphic.git

Along the Morphic-Widgets-Extras packages there are other ones you
can also discover in this repository.

Once done, in a Workspace execute the code to install the package:

Feature require: 'Morphic-Widgets-Extras'

Your Cuis-Smalltalk environment is now equiped for the next sections of
this chapter.

6.2 Ellipse Morph
Let’s start with one of the basic morphs, an EllipseMorph. You could write
EllipseMorph new openInWorld and Do-it, but we are doing visual things
for now, so let’s get a World Menu and select from New Morph... Basic
submenu and drag onto the desktop.

Every time one obtains a morph from a New Morph... submenu, one gets
a different morph but made to a standard style.

Figure 6.1: Select EllipseMorph from a menu

https://github.com/Cuis-Smalltalk/Morphic/raw/master/Morphic-Widgets-Extras.pck.st

Chapter 6: Visual with Morph 89

The basic challenge of user interface design is to communicate visibility
and control. Where am I? What can I do here?

One of the balance points in design is how to eliminate clutter. One
useful strategy is to reveal capabilities in context as they are needed.

In the case of Cuis-Smalltalk, you have to know some basics because
helpful tools are there but stay out of the way. At any time you can Right-
Click on the desktop to get the World Menu. You can also Middle-Click
on any Morph to get a halo of construction handles, which show up as small
colored circular icons. If you pause the cursor over one of these, you get a
tool tip, a temporary text popup who’s name should give a clue to its usage.

If you click elsewhere the construction handles leave, but you can get
them back at any time with a mouse click.

Figure 6.2: Drag construction handle to change size

Now that you know this, move the yellow lower right handle with tool tip
Change size via Click-Drag. Just hold down the left mouse button while
the cursor is over the handle, move the cursor to the right and down, and
release the mouse button.

Chapter 6: Visual with Morph 90

Figure 6.3: A larger ellipse

6.3 Submorph
Morphs can contain other morphs. These interior morphs are called sub-
morphs of their containing morph. Again, you can do this by writing the
software “code”, but let’s do it directly with a WidgetMorph.

First we obtain a WidgetMorph from the New morph... submenus. The
WidgetMorph instance displays itself as a rect with a border.

Chapter 6: Visual with Morph 91

Figure 6.4: Obtain a WidgetMorph

Now drag the rect over the ellipse and Middle-Click on the rect and
click on the blue construction handle to gets the rect’s Morph Menu. Use
the menu selection embed into... and select the ellipse as its new parent.

Figure 6.5: Make the rect a submorph of the ellipse

Chapter 6: Visual with Morph 92

Now when you click-drag the ellipse, or use the Pick up or Move con-
struction handles, the rect is just a decoration for the ellipse.

Indeed, the rect seems to have fused into the ellipse. Using the mouse
where the rect shows itself is just using the mouse on the ellipse. This rect
does not have many interesting behaviors.

Let’s add a behavior to just this one WidgetMorph.

6.4 A brief introduction to Inspectors
To get the construction halo for an interior morph, just Middle-Click mul-
tiple times to “drill down” through the submorph hierarchy.

Figure 6.6: Middle-Click for construction handles

Figure 6.7: Middle-Click again to descend into submorphs

There is an orange handle on the right, just under the green Duplicate
handle. Left-Click this to get the Debug menu. Use this menu to get an
Inspector for the rect.

Chapter 6: Visual with Morph 93

Observe Figure 6.8, on the left we have a pane for self, all inst vars, and
the individual instance variables. Clicking to select “all inst vars” and the
values pane on the right shows that the owner of the rect is the ellipse and
rect currently has no submorphs.

The lower pane is a Smalltalk code editor, basically a workspace, where
self is bound to the object we are inspecting.

Inspectors work for every object by the way, not just morphs.

Figure 6.8: Add instance specific behavior

To add a behavior to all instances of a class, we create an instance method.
Here we are going to create a behavior for “just this one WidgetMorph in-
stance”.

In addition to instance variables, a morph can have any number of named
properties which can be different for each morph.

We add two properties here:

Chapter 6: Visual with Morph 94

self setProperty: #handlesMouseDown: toValue: true.

self setProperty: #mouseButton1Up:localPosition:

toValue: [:ignoredEvent :ignoredPosition| self color: Color random]

Example 6.1: Edit the behavior of this morph from its Inspector

These properties are special to the user interface. You can find methods
with these names in the Morph class to see what they do.

After selecting the text and Do-it, each time you Left-Click on the
rect it changes color!

Note that you can no longer move the ellipse by mouse-down on the rect,
because the rect now takes the mouse event. You have to mouse-down on
the ellipse. More on this below.

One quick note on Move versus Pick up. Movemoves a submorph “within”
its parent. Pick up grabs a morph “out” of its parent.

Figure 6.9: Move submorph within its parent

Figure 6.10: Pick a submorph out of its parent

Chapter 6: Visual with Morph 95

Before we go on, let’s use an inspector on the ellipse to change values of
a couple of its instance variables.

Figure 6.11: Inspect instance variables of the ellipse

Observe Figure 6.12 and Example 6.2. In the lower pane of the inspector,
code can be executed in the context of the inspected object. self refers to
the instance. Here the pane contains code to set the borderWidth and the
borderColor.

self borderWidth: 10.

self borderColor: Color blue

Example 6.2: Edit the state of this ellipse from its Inspector

Chapter 6: Visual with Morph 96

Figure 6.12: Use Inspector to set border color and border width

In the typical case one wants to refine or change behaviors for all instances
of a class.

6.5 Building your specialized Morph
Let’s make a simple subclass which changes color when Left-Clicked. Cre-
ate a new class just as we did with Spacewar! but subclass EllipseMorph
with #ColorClickEllipse.

EllipseMorph subclass: #ColorClickEllipse

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

Save the class definition with Ctrl-s.

Right-Click on the Message Category pane and select new
category.... This brings up a number of selections and allows us to

Chapter 6: Visual with Morph 97

create new ones. Select “event handling testing”. Then add the method
ColorClickEllipse>>handlesMouseDown:.

handlesMouseDown: aMouseButtonEvent

"Answer that I do handle mouseDown events"

↑ true

Likewise, add a new catagory “event handing” and add the other method
we need.

mouseButton1Up: aMouseButtonEvent localPosition: localEventPosition

"I ignore the mouseEvent information and change my color."

self color: Color random

Now, you have created a new Morph class and can select a
ColorClickEllipse from the World Menu New Morph.. and try it out.
These are fun to Left-Click on. Make as many as you want!

Chapter 6: Visual with Morph 98

Figure 6.13: Obtain a ColorClickEllipse

Now you know how to specialize an individual morph, or make a whole
new class of them!

6.6 Spacewar! Morphs

6.6.1 All Morphs

Previously we defined the actors of the game as subclasses of the very general
Object class (See Example 3.14). However the game play, the central star,
the ships and the torpedoes are visual objects, each with a dedicated graphic
shape:

• the game play is a simple rectangular area filled with the black color,

• the central star is a fluctuating yellow disk with an orange aura,

Chapter 6: Visual with Morph 99

• the ships are rotating quadrangles each one painted with a different
color,

• a torpedo is a rotating triangle to paint with a different color depending
on the firing ship.

Therefore it makes sense to turn these actors into kinds of Morphs, the
visual entity of Cuis-Smalltalk. To do so, point a System Browser to the class
definition of each actor, replace the parent class Object by Morph, then save
the class definition with Ctrl-s.

For example, the torpedo class as seen in Example 3.14 is edited as:

Morph subclass: #Torpedo

instanceVariableNames: 'position velocity lifeSpan'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

Moreover, as you may have guessed, a Morph already knows about its
position on screen – it can be dragged in the screen with the mouse cur-
sor. Therefore the position instance variable is redundant and should be
removed. For now we keep it, it will be removed later when we will know
how to replace each of its use cases with its appropriate Morph counterpart.

� �
Edit SpaceWar, CentralStar and SpaceShip to be subclasses of

the Morph class.
 	
Exercise 6.1: Make all Morphs

As explained in the previous sections of this chapter, a morph can be
embedded within another morph. In Spacewar!, a SpaceWar morph instance
presenting the game play, it is the owner of the central star, space ship
and torpedo morphs. Put in other words, the central star, space ships and
torpedoes are submorphs of a SpaceWar morph instance.

The SpaceWar>>initializeActors code in Example 4.17 is not complete
without adding and positioning the central star and space ships as submorphs
of the Spacewar! game play:

Chapter 6: Visual with Morph 100

SpaceWar>>initializeActors

centralStar ← CentralStar new.

self addMorph: centralStar.

centralStar morphPosition: 0 @ 0.

ships ← Array

with: (SpaceShip new color: Color white)

with: (SpaceShip new color: Color red).

self addAllMorphs: ships.

ships first morphPosition: 200 @ -200.

ships second morphPosition: -200 @ 200.

torpedoes ←OrderedCollection new

Example 6.3: Complete code to initialize the Spacewar! actors

There are two important messages: #addMorph: and #morphPosition:.
The former asks to the receiver morph to embed its morph argument as
a submorph, the later asks to set the receiver coordinates in its owner’s
reference frame. From reading the code, you deduce the origin of the owner
reference frame is its middle, indeed our central star is in the middle of the
game play.

There is a third message not written here, #morphPosition, to ask the
coordinates of the receiver in its owner’s reference frame.

Remember our discussion about the position instance variable. Now you
clearly understand it is redundant and we remove it from the SpaceShip and
Torpedo definitions. Each time we need to access the position, we just write
self morphPosition and each time we need to modify the position we write
self morphPosition: newPosition. More on that later.

6.6.2 The art of refactoring

In our [newtonian model], page 28, we explained the space ships are subjected
to the engine acceleration and the gravity pull of the central star. The
equations are described in Figure 2.4.

Based on these mathematics, we wrote the SpaceShip>>update: method
to update the ship position according to the elapsed time – see Example 4.19.

So far in our model, a torpedo is not subjected to the central start gravity
pull nor its engine acceleration. It is supposing its mass is zero which is
unlikely. Of course the Torpedo>>update: method is simpler than the space
ship counter part – see Example 4.18. Nevertheless, it is more accurate and
even more fun that the torpedoes are subjected to the gravity pull1 and
its engine acceleration; an agile space ship pilot could use gravity assist to
accelerate a torpedo fired with a path close to the central star.

1 So a torpedo should come with a mass.

Chapter 6: Visual with Morph 101

What are the impacts of these considerations on the torpedo and space
ship entities?

1. They will share common states as the mass, the position, the velocity
and the acceleration.

2. They will share common behaviors as the computation to update the
position and velocity.

3. They will have different states: a torpedo has a life span state while a
space ship has fuel tank capacity and torpedoes stock states.

4. They will have different behaviors: a torpedo self destructs when its life
span expires, a space ship fires torpedoes and accelerates as long as its
fuel tank and its torpedoes count are not zero.

Shared state and behaviors suggest a common class. Unshared states
and behaviors suggests specialized subclasses which embody the differences.
So let us “factor out” the shared elements of the SpaceShip and Torpedo
classes into a common ancestor class; one more specialized than the Morph
class they currently share.

Doing such analysis on the computer model of the game is part of the
refactoring effort to avoid behavior and state duplications while making more
obvious the common logic in the entities. The general idea of code refactoring
is to rework existing code to make it more elegant, understandable and
logical.

To do so, we will introduce a Mobile class, a kind of Morph with behaviors
specific to a mobile object subjected to accelerations. Its states are the mass,
position, velocity and acceleration. Well, as we are discussing refactoring,
the mass state does not really makes sense in our game, indeed our mobile’s
mass is constant. We just need a method returning a literal number and we
can then remove the mobile instance variable.

It results in this Mobile definition:

Morph subclass: #Mobile

instanceVariableNames: 'velocity acceleration'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

Example 6.4: Mobile in the game play

Chapter 6: Visual with Morph 102

� �
What should be the refactored definitions of the SpaceShip and

Torpedo classes?
 	
Exercise 6.2: Refactoring SpaceShip and Torpedo

The first behaviors we add to our Mobile are its initialization and its
mass:

Mobile>>initialize

super initialize.

velocity ← 0 @ 0.

acceleration ← 0

Mobile>>mass

↑ 1

The next methods to add are the ones relative to the physical calculations.
First, the code to calculate the gravity acceleration:

Mobile>>gravity

"Compute the gravity acceleration vector"

| position |

position ← self morphPosition.

↑ -10 * self mass * owner starMass / (position r raisedTo: 3) * position

Example 6.5: Calculate the gravity force

This method deserves a few comments:

• self morphPosition returns a Point instance, the position of the mo-
bile in the owner reference frame,

• owner is the SpaceWar instance representing the game play. It is the
owner – parent morph – of the mobile. When asking #starMass, it
interrogates its central star mass and return its value:

SpaceWar>>starMass

↑ centralStar mass

• In position r, the #r message asks the radius attribute of a point
considered in polar coordinates. It is just its length, norm. It is the
distance between the mobile and the central star.

Chapter 6: Visual with Morph 103

• * position really means multiply the previous scalar value with a
Point, hence a vector. Thus the returned value is a Point, a vector
in this context, the gravity vector.

The method to update the mobile position and velocity is mostly
the same as in Example 4.19. Of course the SpaceShip>>update: and
Torpedo>>update: version must be both deleted. Below is the complete
version with the morph’s way of accessing the mobile’s position:

Mobile>>update: t

"Update the mobile position and velocity"

| ai ag newVelocity |

"acceleration vectors"

ai ← acceleration * self direction.

ag ← self gravity.

newVelocity ← (ai + ag) * t + velocity.

self morphPosition:

(0.5 * (ai + ag) * t squared)

+ (velocity * t)

+ self morphPosition.

velocity ← newVelocity.

"Are we out of screen? If so we move the mobile to the other corner

and slow it down by a factor of 2"

(self isInOuterSpace and: [self isGoingOuterSpace]) ifTrue: [

velocity ← velocity / 2.

self morphPosition: self morphPosition negated]

Example 6.6: Mobile’s update: method

Now we should add the two methods to detect when a mobile is heading
off into deep space:

Mobile>>isInOuterSpace

"Is the mobile located in the outer space? (outside of the game

play area)"

↑ (owner morphContainsPoint: self morphPosition) not

Mobile>>isGoingOuterSpace

"is the mobile going crazy in the direction of the outer space?"

↑ (self morphPosition dotProduct: velocity) > 0

Example 6.7: Test when a mobile is “spaced out”

As you see, these test methods are simple and short. When writing Cuis-
Smalltalk code, this is something we appreciate a lot and we do not hesitate
to cut a long method in several small methods. It improves readability and

Chapter 6: Visual with Morph 104

code reuse. The #morphContainsPoint: message asks the receiver morph
whether the point in argument is inside its shape.

When a mobile is updated, its position and velocity are updated. However
the Mobile subclasses SpaceShip or Torpedo may need additional specific
updates. In object oriented programming there is this special mechanism
named overriding to achieve this.

See the Torpedo>>update: definition:

Torpedo>>update: t

"Update the torpedo position"

super update: t.

"orientate the torpedo in its velocity direction, nicer effect

while inaccurate"

self rotation: (velocity y arcTan: velocity x) + Float halfPi.

lifeSpan ← lifeSpan - 1.

ifeSpan isZero ifTrue: [owner destroyTorpedo: self].

acceleration > 0 ifTrue: [acceleration ← acceleration - 1000]

Here the update: method is specialized to the torpedo specific needs.
The mechanical calculation done in Mobile>>update: is still used to update
the torpedo position and velocity: this is done by super update: t. We
already discussed super. In the context of Torpedo>>update: it means
search for an update: method in Torpedo’s parent class, that class’s parent
and so on until the method is found, if not a Message Not Understood error
is signalled.

Among the specific added behaviors, the torpedo orientation along its
velocity vector is inaccurate but nice looking. The life span control, the self-
destruction sequence, and the engine acceleration are also handled. When a
torpedo is just fired, its engine acceleration is huge then it decreases quickly.

With the System Browser pointed to the Torpedo>>update: method, ob-
serve the inheritance button. It is light green, which indicates the message
is sent to super too. This is a reminder the method supplies a specialized
behavior. The button tool tip explains the color hilight meanings within
the method’s text. When pressing the inheritance button, you browse all
implementations of the update: method within this inheritance chain.

Chapter 6: Visual with Morph 105

Figure 6.14: Update’s inheritance button

We already met an example of overriding when initializing a space ship
instance – see Example 3.17. In the context of our class refactoring, the
initialize overriding spans the whole Mobile hierarchy:

Mobile>>initialize

super initialize.

color ← Color gray.

velocity ← 0 @ 0.

acceleration ← 0

SpaceShip>>initialize

super initialize.

self resupply

Torpedo>>initialize

super initialize.

lifeSpan ← 500.

acceleration ← 4000

Example 6.8: Initialize overriding in the Mobile hierarchy

Observe how each class is only responsible of its specific state initializa-
tion:

1. SpaceShip. Its mechanical states are set with the super initialize
and then the ship is resupplied with fuel and torpedoes:

SpaceShip>>resupply

fuel ← 500.

torpedoes ← 20

2. Torpedo. Inherited mechanical states initialized; add self-destroy se-

Chapter 6: Visual with Morph 106

quence initialization and acceleration adjusted to mimic the torpedo
boost at fire up.

The behaviors specific to each mobile is set with additional methods. The
SpaceShip comes with its control methods we already described previously
in Example 5.8 and Example 5.9, of course there is none for a Torpedo.

Another important specific behavior is how each kind of Mobile is drawn
in the game play, this will be discussed in a next chapter on the fundamentals
of Morph.

107

7 The Fundamentals of Morph

Simple things should be simple and complex things should be pos-
sible.

—Alan Kay

What would we expect if we asked for good support for building GUIs in
a programming system?

In Chapter 6 [Visual with Morph], page 87, we started with that same
question, and gave an overview of Morphs and their interactive behavior.
This chapter deals with how Morphs are built, how to create new Morphs
and what rules they follow.

The User Interface framework in Cuis-Smalltalk is called Morphic. Mor-
phic was originally created by Randy Smith and John Maloney as the UI for
Self. Later, John Maloney ported it to Smalltalk, to be used as the UI for
Squeak.

7.1 Going Vector
For Cuis-Smalltalk, we built Morphic 3, the third design iteration of these
ideas, after Self’s Morphic 1 and Squeak’s Morphic 2. If you already know
Morphic in Self or Squeak, most concepts are similar, although with some
improvements: Morphic 3 coordinates are not limited to being integer num-
bers, the apparent size (zoom level) of elements is not tied to pixel density,
and all drawing is done with high quality (subpixel) anti aliasing. These en-
hancements are enabled by the huge advance in hardware resources since Self
and Squeak were designed (in the late 80’s and late 90’s respectively). Addi-
tionally, careful design of the framework relieves Morph programmers from
much the complexity that was required, especially with regards to geometry.

This step is required until VectorGraphics becomes part of the base Cuis-
Smalltalk image:

Feature require: 'VectorGraphics'

TrueTypeFontFamily read: DirectoryEntry smalltalkImageDirectory

/ 'TrueTypeFonts' / 'DejaVu'/ 'DejaVuSans'

https://bibliography.selflanguage.org/_static/self4.0UserInterface.pdf
https://bibliography.selflanguage.org/_static/self4.0UserInterface.pdf
http://stephane.ducasse.free.fr/FreeBooks/CollectiveNBlueBook/morphic.final.pdf
http://stephane.ducasse.free.fr/FreeBooks/CollectiveNBlueBook/morphic.final.pdf

Chapter 7: The Fundamentals of Morph 108

7.1.1 A first example

Let’s start with some examples. What we want is to build our own graphic
objects, or Morphs. A Morph class is part of the Morph hierarchy and
usually includes a drawOn: method for drawing its distinctive appearance.
If we forget about computers for a second, and consider drawing with color
pens on a sheet of paper, one of the most basic things we can do is to draw
straight lines.

So, let’s start a System Browser window and build a straight line object:

Morph subclass: #LineExampleMorph

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Morphic-Learning'

In method category drawing add:

LineExampleMorph>>drawOn: aCanvas

aCanvas strokeWidth: 20 color: Color green do: [

aCanvas

moveToX: 100 y: 100;

lineToX: 400 y: 200].

Now in a Workspace execute:

LineExampleMorph new openInWorld

If you get a prompter asking whether to install and activate Vector Graph-
ics support, please answer yes. There it is. You have already built your first
Morph class.

Figure 7.1: Details of our line morph

The code is self evident, the drawOn: method takes a VectorCanvas
instance as an argument. VectorCanvas provides many drawing operations
for morphs to use. You can play with the various drawing operations and

Chapter 7: The Fundamentals of Morph 109

their parameters, and see the result. If you make a mistake, and the drawOn:
method fails, you’ll get a red and yellow error box. After fixing your drawOn:
method, do ...World menu → Debug... → Start drawing all again.. to
get your morph redrawn correctly.

� �
How will you modify our line morph so it draws itself as a cross

with an extent of 200 pixels?
 	
Exercise 7.1: Cross morph

7.1.2 Morph you can move

You might have already tried to click and drag on your Line, like you can
do with regular windows and most other Morphs. If not, try now. But
nothing happens! The reason is that our Morph is fixed in a place in the
owner morph (the WorldMorph). It is fixed because drawOn: says it should
be a line between 100@100 and 400@200. Moving it around would mean
modifying those points. One possible way to do that could be to store those
points in instance variables.

But now, we just want to code our morph in the simplest possible way,
and still be able to move it around. The solution is to make it subclass of
MovableMorph, instead of Morph.

To do this, first evaluate the code below to get rid of all LineExample-
Morph instances:

LineExampleMorph allInstancesDo: [:m | m delete]

Example 7.1: Delete all instances of a given morph

Then, in the System Browser class declaration for LineExampleMorph,
type MovableMorph instead of Morph and save. Now execute again:

LineExampleMorph new openInWorld

You will get a line you can grab with the mouse and move it around.
MovableMorph adds a new instance variable called location. If a morph
has a location, it can be moved around, by modifying it. The location
also defines a new local coordinate system. All the coordinates used in the
drawOn: method are now relative to this new coordinate system. That’s why
we don’t need to modify the drawOn: method. drawOn: now tells how the

Chapter 7: The Fundamentals of Morph 110

morph should be drawn, but not where. The location also specifies a possi-
ble rotation and scale factor. This means that subinstances of MovableMorph
can also be rotated and zoomed.

7.1.3 Filled morph

Let’s build another morph, to have more fun.

MovableMorph subclass: #TriangleExampleMorph

instanceVariableNames: 'borderColor fillColor'

classVariableNames: ''

poolDictionaries: ''

category: 'Morphic-Learning'

In method category initialization add:

TriangleExampleMorph>>initialize

super initialize.

borderColor ← Color random alpha: 0.8.

fillColor ← Color random alpha: 0.6.

In the drawing method category add:

TriangleExampleMorph>>drawOn: aCanvas

aCanvas strokeWidth: 10 color: borderColor fillColor: fillColor do: [

aCanvas

moveToX: 0 y: 100;

lineToX: 87 y: -50;

lineToX: -87 y: -50;

lineToX: 0 y: 100].

Take a moment to understand that code, to guess what it will do. Now
execute:

TriangleExampleMorph new openInWorld

Do it several times, and move each triangle around. Each new triangle
you create has different colors. And these colors are not completely opaque.
This means that when you place your triangle over some other morph, you
can see through it.

Chapter 7: The Fundamentals of Morph 111

Figure 7.2: A variety of triangle morphs, one decorated with its halo and
coordinates system

� �
How will you write a movable rectangle morph with an x,y extent

of 200 by 100? The rect will be filled with a random translucent color
and surrounded by a thin blue line.
 	

Exercise 7.2: Rectangle morph

As we learnt previously, Morphic gives you additional ways to interact
with your morphs. With a three button mouse or a wheel mouse, place the
mouse pointer (a HandMorph instance) over one of your triangles and click
with the center button or mouse wheel. If you don’t have a three button
mouse substitute Command-click. You get a constellation of small colored
circles around your morph. This is called the morph’s halo, and each colored
circle is a halo handle. See Figure 7.2.

At the top left you have the red Remove handle. Clicking on it just re-
moves the morph from the morphic world. Hover your hand over each handle,
and you’ll get a tooltip with its name. Other handles let you Duplicate a
morph, open a Menu with actions on it, Pick up (same as dragging it with the
the mouse as you did before). The Move operation is similar to Pick up, but
doesn’t remove the morph from the current owner. More about that, later.

Chapter 7: The Fundamentals of Morph 112

The Debug handle opens a menu from where you can open an Inspector or
a Hierarchy Browser to study the morph.

You also have a Rotate and Change scale handles. Try them! To use
them, move your hand to the handle, and then press the mouse button and
drag it. As you might have guessed, the rotate handles spins your morph
around its 0@0 coordinates (i.e. the origin of its own coordinate system).
The scale handles controls the apparent zoom applied to your morph. Both
scale and rotation (and also displacement, as when you move your morph
around) are implemented by modifying the inner coordinate system defined
by your morph. Displacement, rotation and scale are floating point numbers,
and thus not limited to integers.

We will learn how to control all this with code and animate our morph.

� �
Rotate your rectangle morph. Does it rotate around its center

or around one corner? If necessary rewrite your rectangle morph so it
rotates around its center.
 	

Exercise 7.3: Rotate your rectangle morph arround its center

In the solution we gave for the Exercise 7.1 (Appendix D [Solutions of
the Exercises], page 180), the cross origin is set to its top left. Therefore it
rotates around this point.

� �
How will you rewrite the drawOn: so it rotates around its center?
 	

Exercise 7.4: Rotate the cross around its center

7.1.4 Animated morph

Let’s add two methods to our TriangleExampleMorph to make our triangle
alive:

In the method category stepping define:

TriangleExampleMorph>>wantsSteps

↑ true

Chapter 7: The Fundamentals of Morph 113

...and:

TriangleExampleMorph>>step

fillColor ← Color random.

self redrawNeeded

Then create some additional triangles as you did before.

This will make our triangles change color once a second. But more inter-
esting, edit the method:

TriangleExampleMorph>>stepTime

↑ 100

...and:

TriangleExampleMorph>>step

self morphPosition: self morphPosition + (0.4@0).

self redrawNeeded

Now, our morph steps ten times per second, and moves to the right at a
speed of four pixels per second. At each step it moves by 0.4 pixels, and not
by an integer number of pixels. High quality anti-aliasing drawing means
we can actually do that! You can make it step at a speed of four times a
second, and move 1 pixel each time, and see how different that looks.

Now try this:

TriangleExampleMorph>>step

self morphPosition: self morphPosition + (0.2@0).

self rotateBy: 4 degreesToRadians.

self redrawNeeded

It gets even better. First get rid of all instances:

TriangleExampleMorph allInstancesDo: [:m | m delete]

And modify these methods:

TriangleExampleMorph>>initialize

super initialize.

borderColor ← Color random alpha: 0.8.

fillColor ← Color random alpha: 0.6.

scaleBy ← 1.1

Chapter 7: The Fundamentals of Morph 114

Accept scaleBy as a new instance variable of the TriangleExampleMorph
class.

TriangleExampleMorph>>step

self morphPosition: self morphPosition + (0.2@0).

self rotateBy: 4 degreesToRadians.

self scaleBy: scaleBy.

self scale > 1.2 ifTrue: [scaleBy ← 0.9].

self scale < 0.2 ifTrue: [scaleBy ← 1.1].

self redrawNeeded

Then create a new triangle:

TriangleExampleMorph new openInWorld

See that when the triangle is doing its crazy dance, you can still open a
halo and interact with it.

Figure 7.3: Animated morph

7.1.5 Morph in morph

Now, let’s try something different. Grab one of your LineExampleMorph.
With the halo, zoom it until it is about the size of your triangle. Now
place the triangle above your line. Open a halo on the triangle, click on the
Menu handle and select ...embed into → LineExampleMorph. This makes
the triangle a submorph of the line. Now, if you move, scale or rotate the
line, the triangle also gets adjusted.

You can open a halo on the triangle. To do this, middle-click twice over it.
With the halo on the triangle, you can rotate or zoom it independently of the
line. Also note that when you grab the triangle with your hand (not using
the halo), you grab the line + triangle composite. You can’t just drag the
triangle away. For this, you need the triangle’s halo. Use its Move handle1

to position it without getting it out of the line. Use its Pick up handle to

1 By now, it is likely that the triangle has walked quite a bit!

Chapter 7: The Fundamentals of Morph 115

take it with the hand and drop it in the world. Now, the triangle is no a
longer submorph of the line, and the morphs can be moved, rotated or scaled
independently.

But let’s try something. Make the triangle submorph of the line again.
Now add the following method to category geometry testing of the class
LineExampleMorph:

LineExampleMorph>>clipsSubmorphs

↑ true

The drawing of the triangle gets cut exactly at the bounds of the line.
This is most useful for implementing scrolling panes that only make a part
of their contents visible, but might have other uses too.

Figure 7.4: An animated and clipped submorph triangle

7.2 A Clock Morph
With all the things we have already learned, we can build a more sophis-
ticated morph. Let’s build a ClockMorph as see in Figure 7.5. In order
to have a default text font based on vector graphics, do ...World menu →
Preferences... → Set System Font... → DejaVu... → DejaVuSans2.

2 You can select any other TrueType font from the ones available

Chapter 7: The Fundamentals of Morph 116

Figure 7.5: A clock morph

Let’s create ClockMorph, the dial clock :

MovableMorph subclass: #ClockMorph

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Morphic-Learning'

...and its drawing method in the category drawing:

ClockMorph>>drawOn: aCanvas

aCanvas

ellipseCenterX: 0 y: 0 rx: 100 ry: 100

borderWidth: 10

borderColor: Color lightCyan

fillColor: Color veryVeryLightGray.

aCanvas drawString: 'XII' at: -13 @ -90 font: nil color: Color brown.

aCanvas drawString: 'III' at: 66 @ -10 font: nil color: Color brown.

aCanvas drawString: 'VI' at: -11 @ 70 font: nil color: Color brown.

aCanvas drawString: 'IX' at: -90 @ -10 font: nil color: Color brown

Example 7.2: Drawing the clock dial

We create ClockHourHandMorph, the hand for the hours:

MovableMorph subclass: #ClockHourHandMorph

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Morphic-Learning'

Chapter 7: The Fundamentals of Morph 117

...and its drawing method in the category drawing:

ClockHourHandMorph>>drawOn: aCanvas

aCanvas fillColor: (Color black alpha: 0.6) do: [

aCanvas

moveToX: 0 y: 10;

lineToX: -5 y: 0;

lineToX: 0 y: -50;

lineToX: 5 y: 0;

lineToX: 0 y: 10].

You can start playing with them. We could use several instances of a
single ClockHandMorph, or create several classes. Here we chose to do the
latter. Note that all the drawOn: methods use hardcoded constants for all
coordinates. As we have seen before, this is not a limitation. We don’t
need to write a lot of specialized trigonometric and scaling formulas to build
Morphs in Cuis-Smalltalk!

By now, you might imagine what we are doing with all this, but please
bear with us while we finish building our clock.

We create ClockMinuteHandMorph, the hand for the minutes:

MovableMorph subclass: #ClockMinuteHandMorph

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Morphic-Learning'

...and its drawing method in the category drawing:

ClockMinuteHandMorph>>drawOn: aCanvas

aCanvas fillColor: ((Color black) alpha: 0.6) do: [

aCanvas

moveToX: 0 y: 8;

lineToX: -4 y: 0;

lineToX: 0 y: -82;

lineToX: 4 y: 0;

lineToX: 0 y: 8]

And finally, the ClockSecondHandMorph, the hand for the seconds:

MovableMorph subclass: #ClockSecondHandMorph

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Morphic-Learning'

Chapter 7: The Fundamentals of Morph 118

...and its drawing method in the category drawing:

ClockSecondHandMorph>>drawOn: aCanvas

aCanvas strokeWidth: 2.5 color: Color red do: [

aCanvas

moveToX: 0 y: 0;

lineToX: 0 y: -85]

Now, all that is needed is to put our clock parts together in ClockMorph.
In its method category initialization add its initialize method (accept
the new names as instance variables):

ClockMorph>>initialize

super initialize.

self addMorph: (hourHand ← ClockHourHandMorph new).

self addMorph: (minuteHand ← ClockMinuteHandMorph new).

self addMorph: (secondHand ← ClockSecondHandMorph new)

� �
If you have not already added instance variables for the clock

hands, the Cuis IDE will note this and ask what you want to do about
it. We want to declare the three missing names as instance variables.
 	

Chapter 7: The Fundamentals of Morph 119

Figure 7.6: Declaring unknown selectors as instance variables in current
class

Your ClockMorph class definition should now be complete!

Figure 7.7: ClockMorph with instance variables added

Finally, we animate our clock. In method category stepping add the
method:

ClockMorph>>wantsSteps

↑ true

...and:

Chapter 7: The Fundamentals of Morph 120

ClockMorph>>step

| time |

time ← Time now.

hourHand rotationDegrees: time hour * 30.

minuteHand rotationDegrees: time minute * 6.

secondHand rotationDegrees: time second * 6.

Take a look at how we update the clock hands.

As we said before, any MovableMorph defines a coordinate system for
its own drawOn: method and also for its submorphs. This new coordinate
system might include rotation or reflexion of the axis, and scaling of sizes,
but by default they don’t. This means that they just translate the origin,
by specifying where in the owner point 0@0 is to be located.

The World coordinate system has 0@0 at the top left corner, with X co-
ordinates increasing to the right, and Y coordinates increasing downwards.
Positive rotations go clockwise. This is the usual convention in graphics
frameworks. Note that this is different from the usual mathematics conven-
tion, where Y increases upwards, and positive angles go counterclockwise.

So, how do we update the hands? For example, for the hour hand, one
hour means 30 degrees, as 12 hours means 360 degrees or a whole turn. So,
we multiply hours by 30 to get degrees. Minute and second hand work in
a similar way, but as there are 60 minutes in one hour, and 60 seconds in
one minute, we need to multiply them by 6 to get degrees. As rotation
is done around the origin, and the clock has set the origin at its center
(Example 7.2), there’s no need to set the position of the hands. Their 0@0
origin will therefore be at the clock 0@0, i.e. the center of the clock.

Figure 7.8: A fancy clock morph

Chapter 7: The Fundamentals of Morph 121

� �
Look at the clock on Figure 7.8. Don’t you think its hand for

the seconds decorated with a red and yellow disc is fancy? How will you
modify our clock morph to get this result?
 	

Exercise 7.5: A fancy clock

Create some instances of your clock: ClockMorph new openInWorld. You
can rotate and zoom. Look at the visual quality of the Roman numerals in
the clock face, especially when rotated and zoomed. You don’t get this
graphics quality on your regular programming environment! You can also
extract the parts, or scale each separately. Another fun experiment is to
extract the Roman numerals into a separate ClockFaceMorph, and make it
submorph of the Clock. Then, you can rotate just the face, not the clock,
and the clock will show fake time. Try it!

You might have noted two things that seem missing, though: How to
compute bounding rectangles for Morphs, and how to detect if a Morph
is being hit by the Hand, so you can move it or get a halo. The display
rectangle that fully contains a morph is required by the framework to man-
age the required refresh of Display areas as a result of any change. But
you don’t need to know this rectangle in order to build your own Morphs.
In Cuis-Smalltalk, the framework computes it as needed, and stores it in
the privateDisplayBounds variable. You don’t need to worry about that
variable at all.

With respect to detecting if a Morph is being touched by the Hand, or
more generally, if some pixel belongs to a Morph, truth is that during the
drawing operation of a Morph, the framework indeed knows all the pixels
it is affecting. The drawOn: method completely specifies the shape of the
Morph. Therefore, there is no need to ask the programmer to code the
Morph geometry again in a separate method! All that is needed is careful
design of the framework itself, to avoid requiring programmers to handle this
extra complexity.

The ideas we have outlined in this chapter are the fundamental ones
in Morphic, and the framework is implemented in order to support them.
Morphs (i.e. interactive graphic objects) are very general and flexible. They
are not restricted to a conventional widget library, although such a library
(rooted in WidgetMorph) is included and used for building all the Smalltalk
tools.

Chapter 7: The Fundamentals of Morph 122

The examples we have explored use the VectorGraphics package. This
package includes VectorCanvas and HybridCanvas classes. However, in-
stalling this package is not required for using the regular Smalltalk tools you
have been using. The reason is that Cuis-Smalltalk includes by default the
BitBltCanvas class inherited from Squeak (and called FormCanvas there).
BitBltCanvas doesn’t support the vector graphics drawing operations and
doesn’t do anti-aliasing or zooming. But it is mature, and it relies on the Bit-
Blt operation that is included in the VM. This means that it offers excellent
performance.

VectorGraphics is still in active development. When its drawing perfor-
mance becomes good enough, it will be able to draw all Morphs, completely
replacing BitBltCanvas. Then, the UI customization option World menu →
Preferences...→ Font Sizes... will no longer be needed, as all windows
will be zoomable, in addition to resizable.

To further explore Cuis-Smalltalk’ Morphic, evaluate Feature
require: 'SVG', and then SVGElementMorph examplesLion and the
other examples there. Also, be sure to try the example in the comment
in the BitBltCanvas class>>unicodeExamples and BitBltCanvas
class>>unicodeUtf32Examples methods.

7.3 Back to Spacewar! Morphs
For performance reasons, our Spacewar! game does not use the
VectorGraphics package. It relies on the BitBlt canvas. Therefore, each of
our moprh should answer false to the #requiresVectorCanvas message:

Mobile>>requiresVectorCanvas

↑ false

CentralStar>>>requiresVectorCanvas

↑ false

SpaceWar>>>requiresVectorCanvas

↑ false

Example 7.3: We don’t use VectorGraphics for performance reason

By inheritance, Mobile being a superclass of SpaceShip and Torpedo
means that instances of these later classes also respond false to the
#requiresVectorCanvas message.

7.3.1 Central star

Because we use the bitmap canvas for the rendering of our morphs, each
morph should knows about its extent. That way the collision detection
between star, ships and torpedoes works properly.

Chapter 7: The Fundamentals of Morph 123

When one of our morphs receives the #morphExtent message, it answers
its extent in its idle position when not rotated.

Our central has an extent of 30 @ 30:

CentralStar>>morphExtent

↑ `30 @ 30`

Example 7.4: Central star extent

� �
An expression surrounded with backticks '`' is evaluated only

once, when the method is first saved and compiled. This creates a
compound literal value and improves the performance of the method
since the expression is not evaluated each time the method is called:
the pre-built value is used instead.
 	

As you learnt previously, a morph draws itself from its drawOn: method.
We draw the star as an ellipse with randomly fluctuating x and y radius:

CentralStar>>drawOn: canvas

| radius |

radius ← self morphExtent // 2.

canvas ellipseCenterX: 0

y: 0

rx: radius x + (2 atRandom - 1)

ry: radius y + (2 atRandom - 1)

borderWidth: 3

borderColor: Color orange

fillColor: Color yellow

Example 7.5: A star with a fluctuating size

The star diameters in the x and y directions are fluctuating independently
of 0 to 2 units. The star does not look perfectly round.

Figure 7.9: A star with a fluctuating size

Chapter 7: The Fundamentals of Morph 124

7.3.2 Space ship

At the game start-up, the nose of the space ship is pointing to the top of the
screen as seen in Figure 7.10 and the angle of its direction is therefore -90◦,
while the angle of its rotation is 0◦. Remember the Y ordinate are oriented
toward the bottom of the screen.

Figure 7.10: Space ship diagram at game start-up

Given the vertices as seen in Figure 7.10, the extent is 20 @ 30:

SpaceShip>>morphExtent

↑ `20 @ 30`

Then its drawOn: method is written as:

SpaceShip>>drawOn: canvas

| a b c d |

a ← 0 @ -15.

b ← -10 @ 15.

c ← 0 @ 10.

d ← 10 @ 15.

canvas line: a to: b width: 2 color: color.

canvas line: b to: c width: 2 color: color.

canvas line: c to: d width: 2 color: color.

canvas line: d to: a width: 2 color: color.

"Draw gas exhaust"

acceleration ifNotZero: [

canvas line: c to: 0 @ 35 width: 1 color: Color gray]

Example 7.6: Space ship drawing

Chapter 7: The Fundamentals of Morph 125

When there is an acceleration from the engine, we draw a small gray line
to represent the gas exhaust.

When the user turns the ship, the morph is rotated a bit:

SpaceShip>>right

"Rotate the ship to its right"

self rotateBy: 0.1

SpaceShip>>left

"Rotate the ship to its left"

self rotateBy: -0.1

Underneath, MobileMorph is equipped with an affine transformation to
scale, rotate and translate the coordinates passed as arguments to the draw-
ing messages received by the canvas.

7.3.3 Torpedo

Alike a space ship, when a torpedo is just instantiated its nose points in the
direction of the top of the screen and its vertices are given by the Figure 7.11.

Figure 7.11: Torpedo diagram at game start-up

Chapter 7: The Fundamentals of Morph 126

� �
Given the vertices given by Figure 7.11, how will you write its

morphExtent method?
 	
Exercise 7.6: Torpedo extent

A space ship and a torpedo share the same orientation. To orient correctly
a newly fired torpedo, you just copy the orientation from its space ship:

SpaceShip>>fireTorpedo

"Fire a torpedo in the direction of the ship heading with its

velocity"

../..

torpedo ← Torpedo new.

torpedo

morphPosition: self morphPosition + self nose;

rotation: location radians; "copy the rotation angle from ship"
velocity: velocity;

../..

� �
How will you write the Torpedo’s drawOn: method?
 	

Exercise 7.7: Torpedo drawing

In the game play, a torpedo is always oriented in the direction of its
velocity. While inaccurate, it produces a nice effect when a torpedo is pulled
by the central star. When the torpedo’s velocity vector is vertical, pointing
to the top of the screen, its angle is -90◦ in the screen coordinates system.
In that situation the torpedo is not rotated – or 0◦ rotated – therefore we
add 90◦ to the velocity angle to get the matching rotation of the torpedo:

Torpedo>>update: t

"Update the torpedo position"

../..

self rotation: (velocity y arcTan: velocity x) + Float halfPi.

../..

Chapter 7: The Fundamentals of Morph 127

7.3.4 Drawing revisited

As you may have observed, the SpaceShip and Torpedo drawOn: methods
share the same logic: drawing a polygon given its vertices. We likely want
to push this common logic to their common ancestor, the Mobile class. It
needs to know about its vertices, so we may want to add an instance variable
vertices initialized in its sub classes with an array containing the points:

MovableMorph subclass: #Mobile

instanceVariableNames: 'acceleration color velocity vertices'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

SpaceShip>>initialize

super initialize.

vertices ← {0@-15 . -10@15. 0@10. 10@15}.

self resupply

Torpedo>>initialize

super initialize.

vertices ← {0@-4 . -2@4 . 2@4}.

lifeSpan ← 500.

acceleration ← 3000

However this is not a good idea. Imagine the game play with 200 torpe-
does, the vertices array will be duplicated 200 times with the same data!

Class instance variable

In that kind of situation, what you want is a class instance variable defined
in the class side – in contrast to the instance side where we have been coding
until now.

We make use of the fact that all objects are instances of some class. The
Mobile class is an instance of the class Class!

1. A class instance variable can be accessed and assigned only by the class
itself in a class method.

2. To access a class instance variable, an instance class (i.e. a fired torpedo)
asks to the class with dedicated messages triggering class methods.

3. In the class hierarchy, each sub classes has a different value for the same
class instance variable – in contrast with a class variable shared among
the sub classes (discussed later).

4. To edit the class instance variables and class methods, in the System
Browser press the class button under the class list.

In the System Browser, we click the class button then we declare our
variable in the Mobile class definition – Figure 7.12:

Chapter 7: The Fundamentals of Morph 128

Mobile class

instanceVariableNames: 'vertices'

Example 7.7: vertices an instance variable in Mobile class

Then we write an access method in the Mobile class, so SpaceShip and
Torpedo instances can access it:

Mobile class>>vertices

↑ vertices

Figure 7.12: The class side of the System Browser

Next, each subclass is responsible to correctly initialize vertices with
its initialize class method:

Chapter 7: The Fundamentals of Morph 129

SpaceShip class>>initialize

"SpaceShip initialize"

vertices ← {0@-15 . -10@15. 0@10. 10@15}

Torpedo class>>initialize

"Torpedo initialize"

vertices ← {0@-4 . -2@4 . 2@4}

Example 7.8: Initialize a class

When a class is installed in Cuis-Smalltalk, its initialize class method
is executed. Alternatively select the comment and execute it with Ctrl-d.

In a Workspace observe to understand how behave a class instance vari-
able:

SpaceShip vertices.
⇒ nil

SpaceShip initialize.

SpaceShip vertices.
⇒ #(0@-15 -10@15 0@10 10@15)

Torpedo vertices.
⇒ nil

Torpedo initialize.

Torpedo vertices.
⇒ #(0@-4 -2@4 2@4)

Example 7.9: A class instance variable value is not shared by the sub
classes

This is really the behavior we want: SpaceShip and Torpedo instances
have a different diagram. However, every instances of a SpaceShip will have
the same diagram, referring to the same vertices array (i.e. same location
in the computer memory).

Each instance asks its class side with the #class message:

aTorpedo class
⇒ Torpedo

self class
⇒ SpaceShip

The Torpedo’s drawOn: is rewritten to access the vertices in its class side:

Torpedo>>drawOn: canvas

| vertices |

Chapter 7: The Fundamentals of Morph 130

vertices ← self class vertices.

canvas line: vertices first to: vertices second width: 2 color: color.

canvas line: vertices third to: vertices second width: 2 color: color.

canvas line: vertices first to: vertices third width: 2 color: color

� �
How will you rewrite SpaceShip’s drawOn: to use the vertices

in its class side?
 	
Exercise 7.8: Space ship access to its diagram in class side

So far, we still have this redundancy in the drawOn: methods. What we
want is Mobile to be responsible to draw the polygon given a vertices array:
self drawOn: canvas polygon: vertices.

The SpaceShip and Torpedo’s drawOn: will then be simply written as:

Torpedo>>drawOn: canvas

self drawOn: canvas polygon: self class vertices

SpaceShip>>drawOn: canvas

| vertices |

vertices ← self class vertices.

self drawOn: canvas polygon: vertices.

"Draw gas exhaust"

acceleration ifNotZero: [

canvas line: vertices third to: 0@35 width: 1 color: Color gray]

� �
How will you write the drawOn:polygon: method in Mobile?

Tip: use the iterator withIndexDo:.
 	
Exercise 7.9: Draw on Mobile

Class variable

A class variable is written capitalized in the argument of
classVariableNames: keyword:

Chapter 7: The Fundamentals of Morph 131

MovableMorph subclass: #Mobile

instanceVariableNames: 'acceleration color velocity'

classVariableNames: 'Vertices'

poolDictionaries: ''

category: 'Spacewar!'

Example 7.10: Vertices a class variable in Mobile

As a class instance variable, it can be directly accessed from the class
side and instances are grant access only with messages send to the class
side. Contrary to a class instance variable, its value is common in the whole
class hierarchy.

In Spacewar!, a class variable Vertices will have make the diagram com-
mon to a space ship and a torpedo. This is not what we wanted.

7.3.5 Drawing simplified

Using a class variable in the present game design is a bit overkill. It was an
excuse to present the concept of class variable. Indeed the vertices of the
space ship and torpedo diagrams are constant. We do not modify them. As
we did with the mass of the space ship – Example 3.16 – we can use a method
returning a collection, surrounded with backtricks to improve efficiency.

If the game came with an editor where the user redesigns the ship and
torpedo diagrams, it will make sense to hold the vertices in a variable.

SpaceShip>>vertices

↑ `{0@-15 . -10@15. 0@10. 10@15}`

Torpedo>>vertices

↑ `{0@-4 . -2@4 . 2@4}`

Example 7.11: Vertices returned by an instance method

Then in the drawing methods, we replace self class vertices by self
vertices.

7.3.6 Collisions revisited

VectorGraphics can detect morph collision at the pixel level. We are not
that fortunate when using the BitBlt canvas, we have to rely on the rectan-
gular morph extent. The #displayBounds message is just what we need:
it answers the morph bounds in the display, a rectangle encompassing the
morph given its rotation and scale.

Chapter 7: The Fundamentals of Morph 132

Figure 7.13: The display bounds of a space ship

In Example 4.21, we have a very naive approach for collision between the
central star and the ships, based on distance between morphs. It was very in-
accurate. When browsing the Rectangle class, you learn the #intersects:
message can tell us if two rectangles overlap. This is what we need for a more
accurate collision detection between the central star and the space ships:

SpaceWar>>collisionsShipsStar

ships do: [:aShip |

(aShip displayBounds intersects: centralStar displayBounds) ifTrue: [

aShip flashWith: Color red.

self teleport: aShip]]

Example 7.12: Collision (accurate) between the ships and the Sun

� �
Rewrite the three collision detection methods between space ships,

torpedoes and the central star.
 	
Exercise 7.10: Accurate collision detection

133

8 Events

When I used to read fairy tales, I fancied that kind of thing never
happened, and now here I am in the middle of one!

—Lewis Carroll, Alice in Wonderland

What just happened?
We talked above about control flow, how one makes decisions about what
to do in making calculations. We talked about this like the entire computer
processing resource was dedicated to this task. But it isn’t so.

Computers may be fast at some calculations, but they are only so fast,
and when there are many things to do, one shares and takes turns.

So aside from do this and then do that, events happen.

Also, a computer may be fast enough that it literally has nothing to do.
What does it do then? When a processor goes to sleep, how do we get its
attention?

You are reading the right chapter to know.

8.1 System Events
Modern integrated System On a Chip (SOC) hardware has many circuits
which are active at the same time. So one kind of event is sensing something
happening in the world. Class EventSensor handles keyboard key press
and mouse hardware interrupts, translating between hardware signals and
software event objects.

Basically, a morph raises its hand and says what events, if any, it is
interested in receiving. Then it implements methods to get the event objects
holding the information of the captured events. In Cuis-Smalltalk, the class
MorphicEvent and its subclasses represent the diversity of events in the
system.

MorphicEvent
DropEvent
DropFilesEvent
UserInputEvent
KeyboardEvent
MouseEvent
MouseButtonEvent

Chapter 8: Events 134

MouseMoveEvent
MouseScrollEvent

WindowEvent

As MouseMoveEvents are generated, the HandMorph adjusts its screen po-
sition. When mouse and keystroke events arrive, the HandMorph coordinates
the “dispatch” of events to the proper morph under the hand as well as
displaying tool tips and carrying morphs in transit during drag operations.

As we saw in the previous chapter with ColorClickEllipse, any morph
may override default Morph methods to assert that it handles various user
events and the methods which take the associated event objects when events
arrive.

Basically, user input events are generated, a HandMorph reflects any cursor
movement, morphs react to events, each long running task gets a time slice
and makes some progress, any display changes are updated on the screen,
and the next step happens. Time marches forward a step.

This happens over and over and over, keeping the juggler’s illusion that
all balls in the air are moving at once. Underneath, the balls are each moving
just a bit, in sequence.

8.2 Overall Mechanism
In Section 6.4 [A brief introduction to Inspectors], page 92, we explained how
to set properties for an individual morph instance to handle a specific event.
In this case, one property informed Cuis-Smalltalk we were interested by a
given event (#handlesMouseDown), a second property defined the behavior
with a block of code to be executed each time this event occurred.

Alternatively, to handle events in a given morph class, we define the
behavior with instance methods. In the Morph class, observe the method
categories event and event handling testing.

Method catrgory event handling testing lists methods returning a
Boolean to indicate if the instance should be notified by the event. Let’s
take a look at one of these methods, handlesMouseDown:, its comment is
worth reading:

Morph>>handlesMouseDown: aMouseButtonEvent

"Do I want to receive mouseButton messages ?

- #mouseButton1Down:localPosition:

- #mouseButton1Up:localPosition:

- #mouseButton2Down:localPosition:

- #mouseButton2Up:localPosition:

- #mouseButton3Down:localPosition:

- #mouseButton3Up:localPosition:

- #mouseMove:localPosition:

- #mouseButton2Activity

NOTE: The default response is false. Subclasses that implement these

Chapter 8: Events 135

messages directly should override this one to return true.

Implementors could query the argument, and only answer true for (for

example) button 2 up only."

"Use a property test to allow individual instances to dynamically

specify this."

↑ self hasProperty: #'handlesMouseDown:'

As defined by default, this method and the other handlers check to see
if an instance has defined a property with the same name as the standard
method. So each individual instance can add its own behavior.

In a morph class where we want all instances to handle mouse down
events, we just override the appropriate method to return true:

MyMorph>>>>handlesMouseDown: aMouseButtonEvent

↑ true

Now in the events method category for class Morph, we find the handlers
listed in the comment above. A ScrollBar, a kind of Morph to represent
a list’s position control, scrolls its list contents when a mouse button 1 is
pressed:

ScrollBar>>mouseButton1Down: aMouseBtnEvent position: eventPosition

"Update visual feedback"

self setNextDirectionFromEvent: aMouseBtnEvent.

self scrollByPage

To discover other events available for your morph, explore with the Sys-
tem Browser as described above.

8.3 Spacewar! Events
Obviously our Spacewar! game handles events. First to control the ships
with the keyboard. Secondly, we want the game to pause/to resume when
the mouse cursor moves out/in of the game play.

In our design, an unique morph, SpaceWar instance, models the game
play. Therefore we want this instance to handle the events described above.

8.3.1 Mouse event

Mouse cursor enters game play

We want to catch event when the mouse cursor moves over our SpaceWar
morph.

Chapter 8: Events 136

� �
Which method should returns true to let the game play be notified

with dedicated messages the mouse cursor enters or leaves? In which
class should we implement this method?
 	

Exercise 8.1: Get notified of mouse move-over event

Once we make explicit we want the game play to receive mouse move-over
events, we need to set the behavior accordingly with dedicated methods.

Each time the mouse cursor enters the game play, we want:

• Get keyboard focus. It follows the mouse cursor: the keyboard input
goes to the morph under the mouse cursor. In Cuis-Smalltalk, the mouse
cursor is modeled as a HandMorph instance, an event object (see event
classes hierarchy at the beginning of this chapter). An event object
is interrogated about its hand with the #hand message. All in all, we
want the keyboard focus to be targeted toward our game play when the
mouse enters:

event hand newKeyboardFocus: self

• Resume the game. The continuous update of the game is done through
a dedicated process stepping mechanism, which will be discussed in the
next chapter. The game play just asks itself to resume stepping:

self startStepping

� �
Which message is sent to the game play to be notified the mouse

cursor enters the game play area? How should the matching method be
written?
 	

Exercise 8.2: Handle mouse enter event

Mouse cursor leaves game play

We also want to be informed when the mouse cursor leaves our SpaceWar
morph. Thanks to the work done in Exercise 8.1, we already informed Cuis-

Chapter 8: Events 137

Smalltalk we want to be notified of mouse movement over the game play.
However we need to code the behavior when the mouse cursor leaves the
game play:

• Release keyboard focus. We tell Cuis-Smalltalk the game play does not
want keyboard focus:

event hand releaseKeyboardFocus: self

• Pause the game. We stop the continuous stepping update of the game:

self stopStepping

� �
Which message is sent to the game play to be notified the mouse

cursor leaves the game play area? How should we write the overridden
method?
 	

Exercise 8.3: Handle mouse leave event

In graphic user interface, a visual effect is often used to inform the user the
keyboard focus changed. In Spacewar! we change the game play background
depending on the sate of the keyboard focus.

In Figure 8.1, at the left keyboard focus is on the game; at the right
keyboard focus not on the game, it is paused and when can see underneath.

Chapter 8: Events 138

Figure 8.1: Spacewar! effect depending on the keyboard focus

In the Morph framework, the #keyboardFocusChange: message is sent to
the morph losing or gaining the keyboard focus, its parameter is a Boolean.
Therefore we implement the Figure 8.1 behavior in the matching SpaceWar’s
method keyboardFocusChange:

SpaceWar>>keyboardFocusChange: gotFocus

gotFocus

ifTrue: [color ← self defaultColor]

ifFalse: [color ← self defaultColor alpha: 0.5].

self redrawNeeded

Example 8.1: Spacewar! keyboard focus effect

8.3.2 Keyboard event

To control the space ships, we use the keyboard. Therefore we want the
game play be notified of the keyboard events.

� �
Find out which method should return true to let the game be

notified of keyboard event.
 	
Exercise 8.4: Get notified of keyboard event

139

We can decide to be notified of the key down or key up event and also key
down then up event (key stroke). As long as our SpaceWar morph responds
true to the #handlesKeyboard message, it receives the messages #keyUp:,
#keyDown: and #keyStroke:. By default, the matching methods in the
Morph class do nothing.

The argument of these messages is a KeyboardEvent object to which,
among other things, you can ask the #keyCharacter of the pressed key.
The first player ship – the green one – is controlled with the keyboard arrows
when there are stroked:

SpaceWar>>keyStroke: event

| key |

key ← event keyCharacter.

key = Character arrowUp ifTrue: [↑ ships first push].

key = Character arrowRight ifTrue: [↑ ships first right].

key = Character arrowLeft ifTrue: [↑ ships first left].

key = Character arrowDown ifTrue: [↑ ships first fireTorpedo].

Example 8.2: Keystroke to control the first player ship

The arrowUp, arrowRight,.... are Character class method responding
the special characters representing the arrows.

To control the second player ship, we use another classic arrangement in
QWERTY keyboard controlled game: WASD1.

� �
Append the additional code to Example 8.2 to control the second

player ship with the keys WASD. As a reminder, an individual character
writes as $q.
 	

Exercise 8.5: Keys to control the second player ship

1 https://en.wikipedia.org/wiki/Arrow_keys#WASD_keys

https://en.wikipedia.org/wiki/Arrow_keys#WASD_keys

140

9 Code Management

Change is easy, except for the changed part.
—Alan Kay

Regarding the source code, Cuis-Smalltalk comes with several tools to
manipulate it: the image, the change record, the change set and the package
system. We give you a tour around these mechanisms then explain how you
should manage the code of an application written with Cuis-Smalltalk.

9.1 The Image
We already wrote about the Cuis-Smalltalk image (See Section 1.2 [Installing
and configuring Cuis-Smalltalk], page 6). When saving the state of the vir-
tual machine in the image file, every single change done in the environment
will be embodied in the saved image: this includes the windows in the envi-
ronment, Workspace contents, newly written classes and methods, existing
instances including the visual morphs, a debugging session with a System
Browser, an Inspector, etc.

At any time, the user can save the image with ...World menu → Save...
Alternatively Save as... saves the image under an alternate name provided
by the user.

Saving the image is the easiest and most straightforward method to save
your own code. But we can’t really call that code management as your code
is not saved in a dedicated file of its own but mixed into other code in an
image. Moreover it will be unpractical to share your work with others, for
example via a version control system.

For various reasons, an image may be in fuzzy state: the virtual machine
may crash when running it, the file system may be unstable, or the envi-
ronment may be in a lock down state. This is a drawback when using the
image as your sole source code repository. The net result could be loosing
your work.

Where you lost code because of a virtual machine crash there is a solution
to recover your lost editing, the Change Log.

9.2 The Change Log
Cuis-Smalltalk records any action occurring in the environment: the code
you edit in the System Browser, the code you execute in a Workspace. There-

Chapter 9: Code Management 141

fore, in the event of a Cuis-Smalltalk crash you can restore unsaved changes
when you launch the same Cuis-Smalltalk image again. Let’s explore this
feature with a simple example.

On a fresh Cuis-Smalltalk installation, create a new class category named
TheCuisBook and within TheBook class:

• Over the class category pane of System Browser (at the most left), do
...Right click → add items... (a)... key in TheCuisBook.

• Select this new class category and create the class TheBook as a kind of
Object: select the TheCuisBook category then in the source code below
edit the class template to replace #NameOfClass with #TheBook then
save the class definition with Ctrl-s.

Open a Workspace, then key in the following code:

| myBook |

myBook ← TheBook new

Cuis-Smalltalk does not save code you key in the Workspace, but code
you execute. Let’s execute this code: Ctrl-a then Ctrl-p, the Workspace
prints the result: a TheBook, an instance of a TheBook class.

Now kill Cuis-Smalltalk abruptly. On GNU/Linux, you can use the xkill
command to terminate Cuis-Smalltalk by pointing its window.

Now start again Cuis-Smalltalk, it immediately informs you there are
unsaved changes:

Figure 9.1: Cuis-Smalltalk informs about lost changes

From there you have three options:

• Restore lost changes automatically. Cuis-Smalltalk will apply all the
changes: new class definitions, new methods; edited class definitions
and method source code; executed code (in Workspaces or any places
where code can be executed). Often this is not really what you want to
do, particularly the executed code.

• Restore lost changes manually. In the subsequent Lost changes window

Chapter 9: Code Management 142

you are presented with the unsaved changes, one per line, in chronolog-
ical order, with the older ones at the top of the list. You select each
change (line) you want to restore, then you apply your selection with
the file in selections button.

Figure 9.2: Manually select the changes to file in

To file-in the changes related to the creation of the TheBook class but
the executed code in the Workspace, select the two lines related to class
definition.

The contextual menu (mouse right click) of the Lost changes window
offers a lot of options to filter the changes. Useful when the batch of
lost changes is important.

• Nothing. No changes are restored. Keep in mind that unsaved changes
aren’t discarded until you save your image.

In case you change your mind and you want to recover changes, do
...World menu → Changes... → Recently logged Changes....

The system presents you a list of image snapshots tagged with a date
stamp. Pick up the one occurring just before you lost your code, most
likely at the top of the list. Then in the Recent changes window, you
proceed as described earlier to cherry pick the changes to restore.

9.3 The Change Set
On a fresh Cuis-Smalltalk installation, each code you edit in the System
Browser is recorded in a Change Set,

You browse a change set with a tool named the Change Sorter: ...World
menu → Changes... → Change Sorter...

Chapter 9: Code Management 143

Figure 9.3: The Change Sorter, class edit

The TheBook class we added to Cuis-Smalltalk in the previous section is a
change made to the core of the system. By default, it is recorded in a change
set automatically created by the system. In Figure 9.3 at the top right,
observe the class TheBook, it belongs to a change set named 4439-CuisCore-
AuthorName-2020Nov16-13h40m. In the left pane, each unsaved change set
is marked with a --->. Here it tells us the change was not saved on disk. To
save the change set, just use its contextual menu and use one of the file out
entry. The change set will be saved along the Cuis-Smalltalk image under
its system name with AuthorName substituated with the real author name.

Figure 9.4: The Change Sorter, method edit

Chapter 9: Code Management 144

Observe Figure 9.4, after we added the method pages to the TheBook
class, the middle pane lists the added or modified methods. When a method
is selected its source code is printed in the bottom pane.

Let’s say we save the change set – File out entries in the change sorter
tool menu. This creates a new file 4451-CuisCore-HilaireFernandes-
2020Nov14-21h08m-hlsf.001.cs.st along the Cuis-Smalltalk image file:

From Cuis 5.0 [latest update: #4450] on 18 November 2020 at 9:05:09 am'!

!classDefinition: #TheBook category: 'TheCuisBook'!

Object subclass: #TheBook

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'TheCuisBook'!

!TheBook methodsFor: 'as yet unclassified' stamp: 'hlsf 11/18/2020 09:04:58'!

pages

↑ 151! !

Example 9.1: Change set contents

To load this change set back in a new image, you use the File List tool
...World menu → Open → File List... Browse the folder containing the
change set file to load, then select it, from there you have three options to
manipulate it.

Figure 9.5: The File List tool, to install a change set and more

Chapter 9: Code Management 145

• code. It opens a kind of System Browser limited to the code in the
change set file. It is a very handy tool to read and to learn the code
from the change set.

• contents. It opens a Change List tool to review the modifications to the
image this change set will produce once installed. It also let you cherry
pick the individual changes you want to install and to discard. Each line
you cherry pick represents a class or a method addition/modification.
Once you select the code to install, press the file in selections but-
ton to proceed with the installation.

Consider a co-developer modifying the TheBook class, she added an
instance variable pages and adjusted the pages methods accordingly.
She filed out her changes then shared the file with you. Observe in
Figure 9.6 how you will review her changes with the Change List tool.
Stroked in red our code in the image to be removed and in green her
changes to be installed.

Figure 9.6: Change List tool to review modifications to the image

• install. It just installs the complete change set without interactivity.

The change set way of managing the source code is used by the developers
of Cuis-Smalltalk, to work on its core image. When you want to write
an application, a dedicated tool or even a set of classes covering a specific
domain, you really want to use something else to manage the code: a package.

9.4 The Package
A package can hold a set of classes part of the same class category.

Let’s save our Morphic-Learning category as a package using our In-
stalled Packages Browser.

...World menu → Open... → Installed Packages...

Chapter 9: Code Management 146

Figure 9.7: Installed Packages Browser

Note that we invoked Feature require: 'Morphic-Widgets-Extras'
and Feature require: 'VectorGraphics' above.

Looking at the package names, we can observe several things of note:

• Each package is versioned; VectorGraphics has version 1, revision 180.

• There is a package Collections-CompactArrays which we never asked
for.

• Looking at the lower pane, note that the Collections-CompactArrays
package is required by package VectorGraphics.

Now this is important. When a packaged Feature is required, it may
specify that it also requires other packages to work properly, and in fact to
specify that those packages be up to a specific version level.

This is the key to being able to safely compose packages which have
requirements.

OK, let’s click on the New button and type Morphic-Learning into
the prompt. This results in a new package with the same name as our
Morphic-Learning category. Note that this is version 1, revision 0 (1.0 at
right) and that the package has yet to be saved.

Chapter 9: Code Management 147

Figure 9.8: New Package – Morphic-Learning

Remember that to create our ClockMorph we required the packaged Vec-
torGraphics Feature, so to be able to load our package which makes use of
this we need to select our new package and click on the add Requirement
button at center, right.

This brings up a list of loaded packages to choose from.

Figure 9.9: Select package (or Cuis base version) to require

Chapter 9: Code Management 148

Now when we save our package, we see the pathname where the package
file was created. We can now safely email this file, check it into a version
control system, make a copy to our backup thumb drive.

Figure 9.10: Saved package – Morphic-Learning

As mentioned above, package files are just text files with a special format
which Cuis-Smalltalk knows how to load. If you open a File List browser
and view the package file, you will see information on how the package was
created, what it provides and requires, and, if you filled in the comment box
in the Installed Packages browser, a description.

� �
Type “Morphic Toys” into the comment box, re-save your pack-

age, and (re)select the package in a File List to see your package de-
scription.
 	

Exercise 9.1: Describe a package

Chapter 9: Code Management 149

� �
If you have not already done so, create and save a [Spacewar!

package], page 27. There are no additional requirements to specify.
 	
Exercise 9.2: Save Spacewar! package

There are other interesting things we can do with packages. We can
include several class categories in a single package. Consider we want
to span our CuisBook classes in two categories TheCuisBook-Models and
TheCuisBook-Views. A new package created with the name TheCuisBook
includes these two class categories; this label is a prefix to search for the
matching categories to include in the package.

Therefore, often, a package comes with several categories to organize the
classes in matching domains. We encourage to do so. When an application
or framework grows, to keep a sound organisation, you may fell the need to
reshape the class categories: rename, split, merge, etc. As long as you keep
the same prefix in the class categories and the package name, your classes
will be safe in the same package. In the System Browser, you can drag and
drop any class in any class category to reorganize.

� �
Create a TheCuisBook package from the two class categories

TheCuisBook-Models and TheCuisBook-Views. The former contains a
TheBook class and the later a TheBookMorph class. Save the package on
disk.
 	

Exercise 9.3: Two class categories, one package

Imagine we need to print the page number of the TheBook table of con-
tents as lower cased roman number, as we do with the printed version of this
book. The code is very simple:

4 printStringRoman asLowercase
⇒ 'iv'

Instead of invoking this sequence of messages each time we need it, we
add a dedicated message to the Integer class:

Chapter 9: Code Management 150

Integer>>printStringToc

↑ self printStringRoman asLowercase

Now within our TheBook’s methods we just do things like:

../..

aPage ← Page new.

aPage number: 1 printStringToc.

../..

Now we are facing a problem. For the need of the TheBook package
we extend the Integer class with a method printStringToc, however this
method addition is part of the Cuis-Smalltalk core system and its associated
default change set. See Figure 9.11, the Change Sorter tool exactly shows
that.

Figure 9.11: Change Sorter, supplementary method to core

Therefore when saving our TheBook package this method is not included
and it is lost when quitting Cuis-Smalltalk. To include it in our pack-
age we categorize it in a method category with the *TheCuisBook pre-
fix. *TheCuisBook-printing is a good candidate. In the System Browser
method pane, over printStringToc, do ...Contextual menu → more... →
change category... and key in *TheCuisBook-printing.

Now the Change Sorter writes about Integer>>printStringToc:
Method was moved to some other package. The Installed Packages tools
now tells us we have an extension, use its browse button to get an update
on the package contents.

Chapter 9: Code Management 151

Figure 9.12: Package with extension to the Integer class of the
Kernel-Numbers system class category

Observe how each category – class or method one – of an extension is
prefixed with a *.

9.5 Daily Workflow
For our Spacewar! game, we created a dedicated package Spacewar!.pck.st
file. This is the way to go when writing external package: define a dedicated
package and from time to time save your work with the save button in the
Installed Packages tool (See Figure 2.3).

Cuis-Smalltalk uses GitHub to host, version, diff its core development
and to manage a set of external packages (i.e. code that is maintained
independently and outside Cuis-Smalltalk but closely related to it).

Package files are simple text files, encoded for latin alphabet (ISO 8859-
15) and handled without problems by GitHub. Cuis-Smalltalk uses the LF
(ascii code 10) newline convention, as preferred in GitHub. This allows
Git/GitHub to diff versions, and merge branches.

Separate GitHub repositories are used for projects, i.e. package or set of
closely related packages that are always loaded and maintained together as
a whole.

Your daily workflow with Cuis-Smalltalk to develop an external package
will look like:

1. Start with a standard, fresh, Cuis image. Never save the image.

2. Set up your preferred version control system to manage your external
packages. The recommendation is to use a GitHub repository with a
name beginning with ’Cuis-Smalltalk-’, so it will be easy for anybody

Chapter 9: Code Management 152

to find it. But beside this consideration, using any other version control
system is fine.

3. Install the necessary packages from the Cuis-Smalltalk Git repositories.

4. Develop. Modify and/or create packages.

5. Save own packages (to your preferred repositories).

6. add / commit / push accordingly to your version control system

7. Fileout changes that are not part of any package. These are auto-
matically captured in numbered changesets, separated from changes to
packages.

8. Exit the image. Usually without saving.� �
In addition to adding a package preload requirement, you can

also select a requirement and delete or update it using the buttons at
the lower right. Sometimes a package changes which your code depends
on and you have to change your code to accord. When this happens,
to want to be sure to require the newer, changed version. Selecting a
requirement and pressing update will update the requirement to use the
latest loaded package version.
 	

9.5.1 Automate your image

As described in the daily workflow, it is a good habit to not save the whole
image but only the modified package of the edited source code. However,
each time we start a coding session, it is tedious to set up the image to fit
our personal needs and taste.

Things one may want to personalize in the image are:

• Preferences adjustments,

• Placement of tools like System Browser, Workspace, Transcript,

• Default contents in the Workspace, ready to be executed,

• Installation of Packages.

We want to record these image preferences in a setUpEnvironment.st
script to be executed at start up. On GNU/Linux, you ask Cuis-Smalltalk
to run a script with the -s, for example squeakVM Cuis5.0.image -s
setUpEnvironement.st where setUpEnvironement.st. is a file containing
Smalltalk code. A real life example may look like:

../cogspur/squeak Cuis5.0-4426 -s ../scripts/setUpEnvironment.st

We describe in detail an example of a set up script organizing the en-
vironment as seen in Figure 9.13. It is interesting Smalltalk code poking

Chapter 9: Code Management 153

around heterogeneous areas of Cuis-Smalltalk like the developer tools, the
Morph system, the preferences and collection handling.

Figure 9.13: Environment of an image started with the set up script

Let’s start by removing the open windows:

| list |

"Delete all windows but the taskbar"

list ← UISupervisor ui submorphs reject: [:aMorph |

aMorph is: #TaskbarMorph].

list do: [:each | each delete].

The whole user interface world of Cuis-Smalltalk is a kind of Morph, a
WorldMorph instance. Its submorphs are windows, menus, the taskbar or
any kind of morph the user can interact with. To access this WorldMorph
instance you ask to the UISupervisor with the #ui message. Once we
select all the morphs in the world but the taskbar – really #reject: it – we
#delete them from the world.

Next, we change the preferences:

| list morph |

../..

"Change to Dark theme"

Feature require: #'Theme-Themes'.

DarkTheme beCurrent.

"Adjust font size"

Chapter 9: Code Management 154

Preferences smallFonts.

"Adjust taskbar size"

morph ← UISupervisor ui submorphs first.

morph scale: 1 / 2.

We require Theme-Themes package; as it is not installed on the default
image, it will be searched on the disk for installation. Regarding the taskbar
access, remember we deleted all the morphs but the taskbar from the world,
therefore the taskbar is really the first in the sub morphs collection of the
world.

Before installing the tools, we ask a RealEstateAgent the free area.
Sadly this agent does not take into consideration the area occupied by the
task bar, so we need to tweak its answer. Then we compute a quarter of
this free area extent (half in width and half in height make a quarter of the
whole free area):

| list morph area extent |

../..

"Compute the available free space for windows placement"

area ← RealEstateAgent maximumUsableArea

extendBy: 0 @ morph morphHeight negated.

extent ← area extent // 2.

Now we are ready to install a few tools. First three browsers each occu-
pying a quarter of the screen:

"Open a few System Browsers"

BrowserWindow openBrowser

morphBounds: (0 @ 0 extent: extent).

BrowserWindow openBrowser

morphBounds: (area width // 2 @ 0 extent: extent).

"Open a System Browser on a specific class"

morph ← BrowserWindow openBrowser

morphBounds: (area extent // 2 extent: extent).

morph model setClass: Integer selector: nil.

Then in the remaining free quarter, we install a workspace occupying two
thirds of the area and a transcript one third. The workspace is installed with
some default contents. We need to hack a bit because when asking for a new
Workspace, Cuis-Smalltalk does not answer the created instance, we have to
search it in the windows of the world.

"Open a Workspace with some default contents"

Workspace openWorkspace.

morph ← UISupervisor ui submorphs detect: [:aMorph |

aMorph class = WorkspaceWindow].

morph model actualContents: '"Some code"

155

1 + 2.

"Other code"

5 * 3.'.

morph morphBounds:

(0 @ (area height // 2)

extent: extent x @ (2 / 3 * extent y)).

"Open a transcript for logs"

TranscriptWindow openTranscript morphBounds:

(0 @ (area height // 2 + (2 / 3 * extent y))

extent: extent x @ (1 / 3 * extent y)).

Of course you should adjust the argument of the #actualContents: mes-
sage to meaningful code for your usage.

156

10 Debug and Exception Handling

Reactive Principle: Every component accessible to the user should
be able to present itself in a meaningful way for observation and
manipulation.

—Dan Ingalls

The quote above is worth repeating.

We think of Morphs and “data objects” as able to present themselves to
be inspected, but Smalltalk’s runtime state is also presentable.

10.1 Inspecting the Unexpected
We have seen how various exceptional situations cause the appearance of
a debugger window. Indeed, Exceptions are also objects which remember
their context and can present it. Above, we have seen how to generate
MessageNotUnderstood and ZeroDivide Exception instances.

This is another area where the actual mechanics are complex, but the
basic ideas are simple.

Exception instances, being objects, also have classes. The BlockClosure
has a method category exceptions which gathers some handy methods
which allow one to ensure: cleanup or capture and use exceptions (on:do:
and friends).

FileEntry>>readStreamDo: blockWithArg

"Raise FileDoesNotExistException if not found."

| stream result |

stream ← self readStream.

[result ← blockWithArg value: stream]
ensure: [stream ifNotNil: [:s | s close]].
↑ result

Example 10.1: Ensure a FileStream is closed

Exceptions are created and signaled. Let’s make one and look at it.

Chapter 10: Debug and Exception Handling 157

Figure 10.1: Inspecting a ZeroDivide instance

Again, we can use an Inspector on any object, and Exceptions are no
exception! Now you know how to capture one when you need to.

Exceptions, like MorphicEvents are a change, an exception, to typical
control flow.

We noted above the special pseudo-variable, thisContext. Signalling an
exception captures this.

Exception>>signal

↑ self signalIn: thisContext

Example 10.2: Capture thisContext

Chapter 10: Debug and Exception Handling 158

Just as Smalltalk code has special view windows which we call Browsers,
Exceptions have an enhanced viewer we call the Debugger. Let us look at
how to use this very useful viewer.

10.2 The Debugger
First, we need a fairly simple code example to look at. Please type or copy
the following into a Workspace.

| fileNames |

fileNames ← OrderedCollection new.

(DirectoryEntry smalltalkImageDirectory)

childrenDo: [:f | fileNames add: f name].

fileNames asArray.

Example 10.3: Names of Directory Entries

Now, you can Ctrl-a (select All) and Ctrl-p (select Print-it) to see the
result.

Figure 10.2: Names of files and directories in a Directory

Chapter 10: Debug and Exception Handling 159� �
The String class has several method category names starting

with fileman- for converting pathnames (system names for files
and directories) into FileEntry and DirectoryEntry objects.
String>>asFileEntry gives examples.
 	

Now that we know what to expect, let us step through processing of the
code using the debugger. Remove the result, then Ctrl-a (select All) and
Ctrl-Shift-D (select Debug-it).

Figure 10.3: Debug It

The top pane in the debugger shows a view of the execution stack for this
bit of execution context. The way to think of this, the model of execution, is
that each time a method sends a message, it and its current state, arguments
and local variables, are placed on a stack until the result of that message
is received. If that message causes another message to be sent, then the
new state is pushed onto the stack. When a result is returned, the stack

Chapter 10: Debug and Exception Handling 160

frame is poped and processing continues. This works like a stack of trays in
a cafeteria.

The stack frames are displayed to show the stacked receiver and method.
The focus object, the receiver, for the selected stack frame has an inspector
in the lower left debugger panes at the bottom or the window.

The next two lower panes are an inspector for the arguments and local
variables, or temporaries, of the context frame.

The larger area displays the code being processed and hilights the next
message to be sent.

The stack of (framed) execution contexts gives a history of the computa-
tion so far. You can select any frame, view instance values in the receiver,
view the arguments and method variables at that point.

The two rows of buttons above the code pane give additional views and
control of how the execution processing is to proceed.

Notable buttons in the second row:

• Proceed. Continue execution

• Restart. Start execution of the current method from the beginning.
You can edit a method shown in the code pane, save it, and restart it!

• Into. Step Into the code of the next message send.

• Over. Step Over the message send.
Do the next message send, but stay in the current method.

• Through. Step into a block of code by going through – skipping – the
intermediate message sends.
Useful when you need to examine what is going on in a block of code,
argument of the stepped message, for example the #do: message.

Now, we are going to play a bit. If you get out of synch with the instruc-
tions here, just close the debugger and start with Debug-It again.

Chapter 10: Debug and Exception Handling 161

Figure 10.4: Step Into

As you single step the debugger, hilighting of the next message send
changes. Press Over three times. You should see the line starting with
childrenDo: hilighted. Now press Into.

Chapter 10: Debug and Exception Handling 162

Figure 10.5: Viewing Focus Object and Temporaries

The stack area shows the focus object is a DirectoryEntry. Inspect its
instance values by selecting lines in the lower left pane.

The stack area shows the focus method is DirectoryEntry>>childrenDo:.
This is the method displayed in the code pane.

The argument to childrenDo: is aBlock. There are no method variables
to display.

If you press Over again and Into, you should see the context where do:
is being processed.

This might be a good place to investigate the inspectors, look up and
down the stack, and play around a bit. By this time you should feel confident
that you understand the basics of what is displayed here.

You are in control!

Let’s look briefly at another way of doing this.

Chapter 10: Debug and Exception Handling 163

10.3 Halt!
A breakpoint is a place in code where one wishes to pause code processing
and look around. One does not always want to single step to find a problem,
especially one that occurs only once in a while. A breakpoint set where the
problem occurs is quite handy.

In Smalltalk, one uses the halt method to set a breakpoint. The message
#halt is sent to an object which is the debugger’s initial focus.

Please change the Workspace code to add a #halt as follows.

| fileNames |

fileNames := OrderedCollection new.

(DirectoryEntry smalltalkImageDirectory)

childrenDo: [:f | fileNames add: f name. fileNames halt].

fileNames asArray.

Example 10.4: Halt: Set a Breakpoint

� �
The object which receives the #halt message becomes the focus

object of the debugger.
 	
Let’s again Ctrl-a (select All) and Ctrl-p (select Print-it).

Chapter 10: Debug and Exception Handling 164

Figure 10.6: Halt

Press Over twice to step over the breakpoint.

Chapter 10: Debug and Exception Handling 165

Figure 10.7: Step Over Breakpoint

Well, this looks familiar. I know what to do here.

Note that the halt is inside a loop. While in the loop, each time you
press Proceed you will hit the breakpoint in the next iteration of the loop.

In many programming envionments, to make a change you need to kill a
process, recompile code, then start a new process.

Smalltalk is a live environment. You can break, then change or write
code (the Create button at mid-right), restart the stack frame, and continue
processing – all without unwinding the context stack!

As an analogy, in many programming languages, it is like you stub your
toe and visit a physician. The doctor says “Yes. you stubbed your toe.” then
takes out a gun, shoots you, and sends your mother a note “have another
child.” Smalltalk is much more friendly!

166

Note that with great power comes great responsibility.1 In an open sys-
tem, you can place a breakpoint anywhere, including places which can break
the user interface! For example, it could be a bad thing to put a breakpoint
in the code for the Debugger!

1 https://quoteinvestigator.com/2015/07/23/great-power/

https://quoteinvestigator.com/2015/07/23/great-power/

167

11 Sharing Cuis

Programming is hardly ever a solitary communion between one man
and one machine. Caring about other people is a conscious decision,
and one that requires practice.

—Kent Beck, “Smalltalk Best Practice Patterns”(1997)

Programming remains an intensively collaborative process between
groups of program readers and writers.

—Dave Thomas, “Smalltalk With Style”(1996)

Let your code talk — Names matter. Let the code say what it
means. Introduce a method for everything that needs to be done.
Dont be afraid to delegate, even to yourself.

—Oscar Nierstrasz, “Best Practice Patterns - talk slides”(2009)

This book is an invitation.

We hope that you are using Cuis-Smalltalk to discover pathways of in-
terest and are enjoying the journey. If so, at some point you have done
something wonderful and probably want to share it.

Sharing requires communicating intent.

Good writing takes practice. Good writers read.

11.1 Golden Rules of the Smalltalk Guild
Basic questions, that appear to be the golden rules of the Smalltalk inter-
galactic guild1:

• Are methods short and understandable?

• Does a line of code read like a sentence?

• Do method names say what they do, rather than how they do it?

• Do class and instance variable names indicate their role(s)?

• Are there useful class comments?

• Can we make something simpler? Leave something out?

Now, we have been doing Smalltalk code for a while and so tend to follow
good practices, but let’s take another look at our code and see if we can
make it easier for a reader to understand.

1 Don’t panic, at this stage of the book, the authors are still looking to find all the
questions that really matter.

https://1lib.us/book/2083614/6104eb
http://rmod-files.lille.inria.fr/FreeBooks/WithStyle/SmalltalkWithStyle.pdf
http://scg.unibe.ch/download/st/07BestPractice.pdf

Chapter 11: Sharing Cuis 168

11.2 Refactoring to Improve Understanding
Browsing through the code, I note a method named #left, which seems
perhaps like an abbreviation. I can ask for senders to see how #left is used
in code elsewhere.

Figure 11.1: Senders of left

I notice that most uses of #left are to indicate a position, not take an
action. How can I fix that?

Because people frequently want to change things for the better, there are
a number of handy tools to help do this.

Now I could look at our uses of #left in Spacewars!, but the Cuis IDE
already knows how to do this!

If I right-click on the Method Pane in the Browser, I get a context menu
with selections to help me out. Here I choose Rename.

Chapter 11: Sharing Cuis 169

Figure 11.2: Rename left

Now the tools that help us refactor code are quite powerful, so restraint
is called for. I don’t want to change all uses of #left in the Cuis-Smalltalk
system, just in the Spacewar! category.

Figure 11.3: Rename in Category

Chapter 11: Sharing Cuis 170

Of course, when making changes one wants to see that the result is what
one expects.

Figure 11.4: Results of Renaming

As I am not perfect, I tend to save the Cuis-Smalltalk image before I
make large changes using powerful tools. If something happens that I did
not want, I can then quit the image without saving and restart the saved
image which remembers the world before I made the change.

� �
Rename #right to #turnRight.
 	

Exercise 11.1: Renaming a method

Looking around some more in the Browser, I notice the method
SpaceShip>>nose.

Where did I use this? Ah, senders..

Chapter 11: Sharing Cuis 171

Figure 11.5: Senders of nose

Hmmm, perhaps something more specific. How about #noseDirection?
How does that look?

172

Figure 11.6: Rename nose to noseDirection

� �
World menu → Help is your friend. The Terse Guide to Cuise

gives access to a large sample of code usages. The Class Comment
Browser is an alternate way to find interesting class information. There
are also more notes on code maganement and how we use GitHub.
 	� �

We want to share with you! Please visit packages at the main
Cuis-Smalltalk repository at https://github.com/Cuis-Smalltalk,
search GitHub for repositories with names starting with Cuis-Smalltalk-
, and perhaps take a look at tutorials and information in https://
github.com/Cuis-Smalltalk/Learning-Cuis.
 	

There is much more to explore, but this book is an introduction and we
have to stop writing text somewhere. This is a good place. We want to get
back to writing code! And we look forward to seeing your projects!

Welcome to Cuis-Smalltalk!

https://github.com/Cuis-Smalltalk
https://github.com/Cuis-Smalltalk/Learning-Cuis
https://github.com/Cuis-Smalltalk/Learning-Cuis

173

Appendix A Documents Copyright

Part of the syntax chapter from the Squeak by Example book was borrowed
and edited in the present book.
Copyright c© 2007, 2008, 2009 by Andrew P. Black, Stéphane Ducasse, Oscar
Nierstrasz and Damien Pollet.

Figure 1.4

Spacewar running on PDP-1, Joi Ito, 12 May 2007, resized,
https://www.flickr.com/photos/35034362831@N01/494431001
https://creativecommons.org/licenses/by/2.0/deed.en

[Adele Goldberg quote], page 30

Oral History of Adele Goldberg, Computer History Museum, 10 May 2010

Cuis-Smalltalk mascot

The southern mountain cavy (Microcavia australis) is a species of South
American rodent in the family Caviidae.
Copyright c© Euan Mee

174

Appendix B Summary of Syntax

Syntax What it represents
startPoint a variable name
Transcript a global variable name
self pseudo-variable

1 decimal integer
2r101 binary integer
1.5 floating point number
2.4e7 exponential notation
$a the character ‘a’
'Hello' the string “Hello”
#Hello the symbol #Hello
#(1 2 3) a literal array
{1. 2. 1 + 2} a dynamic array

"a comment" a comment

|xy| declaration of variables x and y
x ← 1, x := 1 assign 1 to x
[x + y] a block that evaluates to x+y
<primitive: 1> virtual machine primitive or

annotation

3 factorial a unary message
3+4 a binary message
2 raisedTo: 6 modulo: 10 a keyword message

↑ true, ^ true return the value true
Transcript show: 'hello'.
Transcript cr

expression separator (.)

Transcript show: 'hello'; cr message cascade (;)
`{ 3@4 . 56 . 'click me'}` the compound literal #(3@4 56

'click me')

Local variables.
startPoint is a variable name, or identifier. By convention,
identifiers are composed of words in “camelCase” (i.e., each word
except the first starting with an upper case letter). The first
letter of an instance variable, method or block argument, or
temporary variable must be lower case. This indicates to the
reader that the variable has a private scope.

Appendix B: Summary of Syntax 175

Shared variables
Identifiers that start with upper case letters are global variables,
class variables, pool dictionaries or class names. Smalltalk is a
global variable, an instance of the class SystemDictionary.

The receiver.
self is a keyword that refers to the object inside which the
current method is executing. We call it “the receiver” because
this object will normally have received the message that caused
the method to execute. self is called a “pseudo-variable” since
we cannot assign to it.

Integers.

In addition to ordinary decimal integers like 42, Cuis-Smalltalk
also provides a radix notation. 2r101 is 101 in radix 2 (i.e.,
binary), which is equal to decimal 5.

Float point numbers.
Floating point numbers can be specified with their base-ten ex-
ponent: 2.4e7 is 2.4 × 107.

Characters.
A dollar sign introduces a literal character: $a is the literal for
‘a’. Instances of non-printing characters can be obtained by
sending appropriately named messages to the Character class,
such as Character space and Character tab.

Strings.

Single quotes are used to define a literal string. If you want a
string with a quote inside, just double the quote, as in 'G''day'.

Symbols.

Symbols are like Strings, in that they contain a sequence of
characters. However, unlike a string, a literal symbol is guar-
anteed to be globally unique. There is only one Symbol object
#Hello but there may be multiple String objects with the value
'Hello'.

Static arrays.
Static arrays or Compile-time arrays are defined by #(), sur-
rounding space-separated literals. Everything within the paren-
theses must be a compile-time constant. For example, #(27
#(true false) abc) is a literal array of three elements: the in-
teger 27, the compile-time array containing the two booleans,
and the symbol #abc.

Dynamic arrays.
Dynamic arrays or Run-time arrays. Curly braces { } define
a (dynamic) array at run-time. Elements are expressions sep-
arated by periods. So { 1. 2. 1+2 } defines an array with ele-
ments 1, 2, and the result of evaluating 1+2. (The curly-brace

Appendix B: Summary of Syntax 176

notation is peculiar to the Squeak family dialect of Smalltalk! In
other Smalltalks you must build up dynamic arrays explicitly.)

Comments.
Comments are enclosed in double quotes. "hello" is a com-
ment, not a string, and is ignored by the Cuis-Smalltalk com-
piler. Comments may span multiple lines.

Local variable declarations.
Vertical bars | | enclose the declaration of one or more local
variables in a method (and also in a block).

Assignment.
:= assigns an object to a variable. Sometimes you will see ←
used instead. Since this character is not present in the keyboard,
you key in with the underscore character key. So, x := 1 is the
same as x ← 1 or x _ 1.

Blocks.

Square brackets [] define a block, also known as a block closure
or a lexical closure, which is a first-class object representing a
function. As we shall see, blocks may take arguments and can
have local variables.

Primitives.
<primitive: ...> denotes an invocation of a virtual
machine primitive. (<primitive: 1> is the VM primitive
for SmallInteger>>+.) Any code following the primitive is
executed only if the primitive fails. The same syntax is also
used for method annotations.

Unary messages.
Unary messages consist of a single word (like #factorial) sent
to a receiver (like 3).

Binary messages.
Binary messages are operators (like +) sent to a receiver and
taking a single argument. In 3 + 4, the receiver is 3 and the
argument is 4.

Keyword messages.
Keyword messages consist of multiple keywords (like
#raisedTo:modulo:), each ending with a colon and taking a
single argument. In the expression 2 raisedTo: 6 modulo:
10, the message selector raisedTo:modulo: takes the two
arguments 6 and 10, one following each colon. We send the
message to the receiver 2.

Method return.
↑ is used to return a value from a method. (You must type ^ to
obtain the ↑ character.)

177

Sequences of statements.
A period or full-stop (.) is the statement separator. Putting
a period between two expressions turns them into independent
statements.

Cascades.

Semicolons can be used to send a cascade of messages to a single
receiver. In Transcript show: 'hello'; cr we first send the
keyword message #show: 'hello' to the receiver Transcript,
and then we send the unary message #cr to the same receiver.

Compound Literal
Backticks (`) can be used to create compound literals at compile
time. All components of a compound literal must be known
when the code is compiled.

178

Appendix C The Exercises

Exercise 1: I am an example of an exercise . 3
Exercise 1.1: Middle placement . 9
Exercise 1.2: Concatenate and uppercase . 11
Exercise 1.3: Inverse sum . 12
Exercise 1.4: Capitalize number as words . 13
Exercise 2.1: Hello to Belle . 19
Exercise 2.2: Sum of the squares . 21
Exercise 2.3: Count of methods . 25
Exercise 3.1: Float class information . 36
Exercise 3.2: Cosine table . 42
Exercise 3.3: Multiply by 1024 . 43
Exercise 3.4: Miscellaneous calculation errors with decimal number . . 44
Exercise 3.5: Toward the infinite . 44
Exercise 3.6: Fix the errors . 44
Exercise 3.7: Select apples . 45
Exercise 3.8: Format a string . 47
Exercise 3.9: Instance variables of the Spacewar! protagonists 49
Exercise 3.10: SpaceShip getter message . 50
Exercise 3.11: SpaceShip setter messages . 51
Exercise 3.12: Methods to control ship heading . 52
Exercise 3.13: Methods to control ship acceleration 52
Exercise 3.14: Initialize central star . 53
Exercise 4.1: Cut a string . 56
Exercise 4.2: Negative integer numbers . 60
Exercise 4.3: Hole in a set . 61
Exercise 4.4: Odd integers . 62
Exercise 4.5: Number of prime number between 101 and 200 63
Exercise 4.6: Multiple of 7 . 63
Exercise 4.7: Odd and non prime integers . 63
Exercise 4.8: Cipher decode . 64
Exercise 4.9: Alphabet Caesar’s cipher . 64
Exercise 4.10: Encode with Caesar’s cipher . 64
Exercise 4.11: Decode with Caesar’s cipher . 65
Exercise 4.12: Access part of a collection . 67
Exercise 4.13: Fill an array . 68
Exercise 4.14: Add an element after . 69
Exercise 4.15: Letters . 70
Exercise 4.16: Color by name . 71
Exercise 4.17: Collections to hold the ships and torpedoes 72
Exercise 4.18: Update all ships and torpedoes . 74
Exercise 5.1: Block to compute divisors . 78
Exercise 5.2: Implementing and: and or: . 81
Exercise 5.3: Categorize a method . 83
Exercise 5.4: Categorize control methods . 84

Appendix C: The Exercises 179

Exercise 5.5: Ships collision . 86
Exercise 5.6: Collision between the torpedoes and the Sun 86
Exercise 6.1: Make all Morphs . 99
Exercise 6.2: Refactoring SpaceShip and Torpedo 102
Exercise 7.1: Cross morph . 109
Exercise 7.2: Rectangle morph . 111
Exercise 7.3: Rotate your rectangle morph arround its center 112
Exercise 7.4: Rotate the cross around its center . 112
Exercise 7.5: A fancy clock . 121
Exercise 7.6: Torpedo extent . 126
Exercise 7.7: Torpedo drawing . 126
Exercise 7.8: Space ship access to its diagram in class side 130
Exercise 7.9: Draw on Mobile . 130
Exercise 7.10: Accurate collision detection . 132
Exercise 8.1: Get notified of mouse move-over event 136
Exercise 8.2: Handle mouse enter event . 136
Exercise 8.3: Handle mouse leave event . 137
Exercise 8.4: Get notified of keyboard event . 138
Exercise 8.5: Keys to control the second player ship 139
Exercise 9.1: Describe a package . 148
Exercise 9.2: Save Spacewar! package . 149
Exercise 9.3: Two class categories, one package . 149
Exercise 11.1: Renaming a method . 170

180

Appendix D Solutions of the Exercises

Preface

Exercise 1

In the seventies, four versions were developed: Smalltalk-71, Smalltalk-72,
Smalltalk-76 and Smalltalk-80.

Smallltalk Philosophy

Exercise 1.1

Figure D.1: Placement

Exercise 1.2
Transcript show: 'Hello ', 'my beloved ' asUppercase, 'friend'

Exercise 1.3
1 + (1/2) + (1/3) + (1/4)
⇒ 25/12

Exercise 1.4

Several messages can be sent one after the other:

Transcript show: 2020 printStringWords capitalized

The Message Way of Life

Exercise 2.1
'Hello'

at: 1 put: $B;

Appendix D: Solutions of the Exercises 181

at: 2 put: $e;

at: 3 put: $l;

at: 4 put: $l;

at: 5 put: $e;

yourself

Exercise 2.2
1 + (1/2) squared + (1/3) squared + (1/4) squared
⇒ 205 / 144

Exercise 2.3

From a System Browser, do from the left panel to the right ...Kernel-Text
→ String → arithmetic... the count of methods in the last right panel is
6: *, +, -, /, // and \\.

Class, model of Communicating Entities

Exercise 3.1

When the Float is selected, the wide text pane prints: “class definition for
Float ◦ 92 instance methods ◦ 34 class methods ◦ 1280 total lines of code”

Exercise 3.2
0 to: Float twoPi by: 1/10 do: [:i |

Transcript show: i cos; cr]

Exercise 3.3

1024 is not a random number. It is 210 then written in base 2 : 10000000000,
it is also 1 << 10:

2↑10 ⇒ 1024

1024 printStringBase: 2 ⇒ '10000000000'

1 << 10 ⇒ 1024

Therefore, to multiply an integer by 1024, we shift left of 10 its digits:

360 << 10 ⇒ 368640

360 * 1024 ⇒ 368640

Exercise 3.4
5.2 + 0.9 - 6.1
⇒ 8.881784197001252e-16

5.2 + 0.7 + 0.11
⇒ 6.010000000000001

1.2 * 3 - 3.6
⇒ -4.440892098500626e-16

Appendix D: Solutions of the Exercises 182

Exercise 3.5

The system returns the error ZeroDivide, division by zero.

Exercise 3.6
(52/10) + (9/10) - (61/10)
⇒ 0

(52/10) + (7/10) + (11/100)
⇒ 601/100 soit 6.01

(12/10) * 3 - (36/10)
⇒ 0

Exercise 3.7

There are different options, with slightly different results:

'There are 12 apples' select: [:i |i isLetter].
⇒ 'Thereareapples'

Not really satisfying. So another option:

'There are 12 apples' select: [:i |i isDigit not].
⇒ 'There are apples'

Or even a shorter option with the #reject: message:

'There are 12 apples' reject: [:i |i isDigit].
⇒ 'There are apples'

Exercise 3.8

In String, search for the method category format, there you find the
format: method:

'Joe bought {1} apples and {2} oranges' format: #(5 4)
⇒ 'Joe bought 5 apples and 4 oranges'

Exercise 3.9

The SpaceWar, CentralStar and SpaceShip definitions with their added
instance variable should look like:

Object subclass: #SpaceWar

instanceVariableNames: 'centralStar ships torpedoes'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

Object subclass: #CentralStar

instanceVariableNames: 'mass'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

Appendix D: Solutions of the Exercises 183

Object subclass: #SpaceShip

instanceVariableNames: 'position heading velocity

fuel torpedoes mass acceleration'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

Exercise 3.10
SpaceShip>>position

↑ position

SpaceShip>>velocity

↑ position

SpaceShip>>mass

↑ mass

Exercise 3.11
SpaceShip>>position: aPoint

position ← aPoint

SpaceShip>>velocity: aPoint

velocity ← aPoint

Exercise 3.12
SpaceShip>>left

"Rotate the ship to its left"

heading ← heading + 0.1

SpaceShip>>right

"Rotate the ship to its right"

heading ← heading - 0.1

Exercise 3.13
SpaceShip>>push

"Init an acceleration boost"

acceleration ← 10

SpaceShip>>unpush

"Stop the acceleration boost"

acceleration ← 0

Exercise 3.14
CentralStar>>initialize

super initialize.

mass ← 8000.

The Collection Way of Life

Appendix D: Solutions of the Exercises 184

Exercise 4.1

Open the protocol browser on the class String, search for the method
allButFirst: implemented in SequenceableCollection. Read its com-
ment in its source code.

'Hello My Friend' allButFirst: 6
⇒ 'My Friend'

Exercise 4.2
(-80 to: 50) asArray

Exercise 4.3
(1 to: 100) difference: (25 to: 75)
⇒ #(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

92 93 94 95 96 97 98 99 100)

Exercise 4.4
(-20 to: 45) select: [:z | z odd]

Exercise 4.5
((101 to: 200) select: [:n | n isPrime]) size
⇒ 21

Exercise 4.6
(1 to: 100) select:[:n | n isDivisibleBy: 7]
⇒ #(7 14 21 28 35 42 49 56 63 70 77 84 91 98)

Exercise 4.7

This solution, based on set operations and multiple use of the #select:
message, is mostly compatible with the knowledge acquired at this point of
the book.

| primeNumbers nonPrimeNumbers |

primeNumbers ← (1 to: 100) select: [:n | n isPrime].

nonPrimeNumbers ← (1 to: 100) difference: primeNumbers.

nonPrimeNumbers select: [:n | n odd]
⇒ #(1 9 15 21 25 27 33 35 39 45 49 51 55 57 63 65 69 75

77 81 85 87 91 93 95 99)

A shorter solution with logical operations we have not discussed so far:

(1 to: 100) select:[:n | n isPrime not and: [n odd]]

Exercise 4.8
'Zpvs!bsf!cptt' collect: [:c |

(c asciiValue - 1) asCharacter]
⇒ 'Your are a boss'

Appendix D: Solutions of the Exercises 185

Exercise 4.9
($A to: $Z) collect: [:c |

(c asciiValue - 65 + 3 \\ 26 + 65) asCharacter]

Exercise 4.10

In the solution of Exercise 4.9, we just need to replace the characters interval
with a string:

'SMALLTALKEXPRESSION' collect: [:c |

(c asciiValue - 65 + 3 \\ 26 + 65) asCharacter]
⇒ 'VPDOOWDONHASUHVVLRQ'

Exercise 4.11
'DOHDMDFWDHVW' collect: [:c |

(c asciiValue - 65 - 3 \\ 26 + 65) asCharacter]
⇒ 'ALEAJACTAEST'

Exercise 4.12

The appropriate message is #first:, defined in the parent class
SequenceableCollection. You need to use the protocol or hierarchy
browser on Array to discover it:

array1 first: 2
⇒ #(2 'Apple')

Exercise 4.13

You could simply do a thumb:

array1 at: 1 put: 'kiwi'.

array1 at: 2 put: 'kiwi'.

array1 at: 3 put: 'kiwi'.

array1 at: 4 put: 'kiwi'.

Or even a bit less thumb:

1 to: array1 size do: [:index |

array1 at: index put: 'kiwi']

But if you search for carefully the Array protocol, you can just do:

array1 atAllPut: 'kiwi'.

Exercise 4.14

In the OrderedCollection protocol search for the method add:after:.

coll1 ← {2 . 'Apple' . 2@1 . 1/3 } asOrderedCollection .

coll1 add: 'Orange' after: 'Apple'; yourself.
⇒ an OrderedCollection(2 'Apple' 'Orange' 2@1 1/3)

Exercise 4.15
Set new

Appendix D: Solutions of the Exercises 186

addAll: 'buenos dı́as';

addAll: 'bonjour';

yourself.
⇒ a Set($e $j $o $a $u $b $ $ı́ $r $d $n $s)

Exercise 4.16
colors keysDo: [:key |

colors at: key put: key asString capitalized].

colors
⇒ a Dictionary(#blue->'Blue' #green->'Green' #red->'Red'

#yellow->'Yellow')

Exercise 4.17

When the game starts there is no fired torpedoes, therefore torpedoes is an
empty OrderedCollection, instantiated with the #new class message.

In the other hand, the ships is an Array containing only two elements,
the player ships. We use the #with:with class message to instantiate and
populate the array with two ships created in the argument message.

For the readability, we split the code in several lines with the appropriate
indentation.

torpedoes ← OrderedCollection new.

ships ← Array

with: SpaceShip new

with: SpaceShip new.

Exercise 4.18
SpaceWar>>stepAt: msSinceLast

ships do: [:each | each update: msSinceLast / 1000].

ships do: [:each | each unpush].

torpedoes do: [:each | each update: msSinceLast / 1000].

Control Flow Messaging

Exercise 5.1
| divisors |

divisors ← [:x | (1 to: x) select: [:d | x \\ d = 0]].

divisors value: 60.
⇒ #(1 2 3 4 5 6 10 12 15 20 30 60)

divisors value: 45
⇒ #(1 3 5 9 15 45)

Exercise 5.2

Check the implementations in Boolean, True and False.

Appendix D: Solutions of the Exercises 187

Exercise 5.3

Once the method is edited and saved, in the Method pane select its name
teleport: then do ...right click → more... → change category... →
events...

Exercise 5.4

In the Method pane, select one uncategorized control method, then do ...right
click → more... → change category → new... key-in control.

To categorized the remaining uncategorized control methods, repeat but
select control at the last step as this category now exists.

Exercise 5.5

We do not need an iterator to detect a collision between two ships. However
we use an iterator to take action on each ship when a collision is detected.

SpaceWar>>collisionsShips

| positionA position B |

positionA ← ships first morphPosition.

positionB ← ships second morphPosition.

(positionA dist: positionB) < 25 ifTrue: [

ships do: [:each |

each flashWith: Color red.

self teleport: each]

]

Local variables only used to ease the code source formatting in printed
book.

Exercise 5.6

You just need to pick the appropriate code snippets from the referenced
exercise and examples.

SpaceWar>>collisionsTorpedoesStar

| position |

position ← centralStar morphPosition.

torpedoes do: [:each |

(each morphPosition dist: position) < 8 ifTrue: [

each flashWith: Color orange.

self destroyTorpedo: each]]

Visual with Morph

Exercise 6.1

Just replace all Object occurrences with Morph:

Morph subclass: #SpaceWar

instanceVariableNames: 'centralStar ships torpedoes'

classVariableNames: ''

Appendix D: Solutions of the Exercises 188

poolDictionaries: ''

category: 'Spacewar!'

Morph subclass: #CentralStar

instanceVariableNames: 'mass'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

Morph subclass: #SpaceShip

instanceVariableNames: 'name position heading velocity

fuel torpedoes mass acceleration'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

Exercise 6.2
Mobile subclass: #SpaceShip

instanceVariableNames: 'name heading fuel torpedoes'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

Mobile subclass: #Torpedo

instanceVariableNames: 'lifeSpan'

classVariableNames: ''

poolDictionaries: ''

category: 'Spacewar!'

The Fundamentals of Morph

Exercise 7.1

The drawOn: method is modified to draw two distinct, unconnected lines:

LineExampleMorph>>drawOn: aCanvas

aCanvas strokeWidth: 20 color: Color green do: [

aCanvas

moveToX: 0 y: 0;

lineToX: 200 y: 200;

moveToX: 200 y: 0;

lineToX: 0 y: 200]

Learn how the #moveToX:y: message moves the pencil to a given position
with the pen up, then the #lineToX:y: asks the pencil to draw from that
previous position to this new position.

Exercise 7.2

We create a RectangleExampleMorph, subclass of MovableMorph:

MorphMovableMorph subclass: #RectangleExampleMorph

Appendix D: Solutions of the Exercises 189

instanceVariableNames: 'fillColor'

classVariableNames: ''

poolDictionaries: ''

category: 'Morphic-Learning'

Then its necessary methods to initialize and to draw the morph:

initialize

super initialize .

fillColor ← Color random alpha: 0.5

drawOn: aCanvas

aCanvas

strokeWidth: 1

color: Color blue

fillColor: fillColor

do: [

aCanvas moveToX: 0 y: 0;

lineToX: 200 y: 0;

lineToX: 200 y: 100;

lineToX: 0 y: 100;

lineToX: 0 y: 0]

Figure D.2: Several rectangle morphs

Exercise 7.3

The rectangle we defined in the solution of Exercise 7.2 rotates around its
top left corner, because this is where is the origin (0;0).

Appendix D: Solutions of the Exercises 190

Figure D.3: This rectangle rotates around its top left corner

We need to redefine its corners coordinates so its center position matches
the origin (0;0):

drawOn: aCanvas

aCanvas

strokeWidth: 1

color: Color blue

fillColor: fillColor

do: [

aCanvas moveToX: -100 y: -50;

lineToX: 100 y: -50;

lineToX: 100 y: 50;

lineToX: -100 y: 50;

lineToX: -100 y: -50]

Figure D.4: This rectangle rotates around its center

Exercise 7.4
drawOn: aCanvas

aCanvas strokeWidth: 20 color: Color green do: [aCanvas

moveToX: -100 y: -100;

lineToX: 100 y: 100;

moveToX: 100 y: -100;

lineToX: -100 y: 100]

Appendix D: Solutions of the Exercises 191

Exercise 7.5

Among the clock parts (submorphs) we only need to modify the drawing of
the ClockSecondHandMorph class. The disc is surrounded with a thin red
line and filled in yellow.

ClockSecondHandMorph>>drawOn: aCanvas

aCanvas strokeWidth: 1.5 color: Color red do: [

aCanvas

moveToX: 0 y: 0;

lineToX: 85 y: 0].

aCanvas ellipseCenterX: 0 y: -70 rx: 3 ry: 3

borderWidth: 1

borderColor: Color red fillColor: Color yellow

Exercise 7.6

The width of the torpedo is 4 pixels and its height 8 pixels:

Torpedo>>morphExtent

↑ `4 @ 8`

Exercise 7.7

The Torpedo’s drawOn: method is very similar to the one in SpaceShip
class:

Torpedo>>drawOn: canvas

| a b c |

a ← 0 @ -4.

b ← -2 @ 4.

c ← 2 @ 4.

canvas line: a to: b width: 2 color: color.

canvas line: c to: b width: 2 color: color.

canvas line: a to: c width: 2 color: color.

Exercise 7.8

We use a local variable because we use two times the vertices, one to draw
the ship and a second time to draw the gas exhaust.

SpaceShip>>drawOn: canvas

| vertices |

vertices ← self class vertices.

canvas line: vertices first to: vertices second width: 2 color: color.

canvas line: vertices second to: vertices third width: 2 color: color.

canvas line: vertices third to: vertices fourth width: 2 color: color.

canvas line: vertices fourth to: vertices first width: 2 color: color.

"Draw gas exhaust"

acceleration ifNotZero: [

canvas line: vertices third to: 0@35 width: 1 color: Color gray]

Appendix D: Solutions of the Exercises 192

Exercise 7.9

You need both to iterate each vertex of the vertices array and access
the subsequent vertex by index. The arithmetic reminder operation #\\
is needed to keep the index in the boundary of the collection.

When size is 4 (Space ship diagram), the argument (i \\ size + 1)
takes alternatively the following values:

• i = 1 => 1 \\ 4 + 1 = 1 + 1 = 2

• i = 2 => 2 \\ 4 + 1 = 2 + 1 = 3

• i = 3 => 3 \\ 4 + 1 = 3 + 1 = 4

• i = 4 => 4 \\ 4 + 1 = 0 + 1 = 1

Mobile>>drawOn: canvas polygon: vertices

| size |

size ← vertices size.

vertices withIndexDo: [: aPoint :i |

canvas

line: aPoint

to: (vertices at: (i \\ size + 1))

width: 2

color: color]

Exercise 7.10

Just replace each morph position distance approach with the intersection
detection between the morphs’ display bounds:

SpaceWar>>collisionsShips

(ships first displayBounds intersects: ships second displayBounds)

../..

SpaceWar>>collisionsShipsTorpedoes

ships do: [:aShip |

torpedoes do: [:aTorpedo |

(aShip displayBounds intersects: aTorpedo displayBounds)

../..

SpaceWar>>collisionsTorpedoesStar

torpedoes do: [:each |

(each displayBounds intersects: centralStar displayBounds)

../..

Events

Exercise 8.1

The method handlesMouseOver:, implemented in the SpaceWar morph
class, returns true so the game play is informed of mouse over events in
dedicated methods.

SpaceWar>>handlesMouseOver: event

Appendix D: Solutions of the Exercises 193

↑ true

Exercise 8.2

You need to browse the Morph>>handlesMouseOver: method and read the
comment. It writes about a #mouseEnter: message; we implement the
matching method in SpaceWar class with the behaviors previously described:

SpaceWar>>mouseEnter: event

event hand newKeyboardFocus: self.

self startStepping

Exercise 8.3

The message #mouseLeave: is sent to our SpaceWar instance each time the
mouse cursor move out (leaves) of the game play. Therefore we add the
homonym method to the SpaceWar class:

SpaceWar>>mouseLeave: event

event hand releaseKeyboardFocus: self.

self stopStepping

Exercise 8.4

The #handlesKeyboard message is sent to a morph to know if it wants to
receive keyboard event. The morph responds true to this message to state
its interest on keyboard event. We implement the method in the SpaceWar
class:

SpaceWar>>handlesKeyboard

↑ true

Exercise 8.5

We designate the characters as $w $a $s $d. We append the code below to
the method SpaceWar>>keyStroke:

key = $w ifTrue: [↑ ships second push].

key = $d ifTrue: [↑ ships second right].

key = $a ifTrue: [↑ ships second left].

key = $s ifTrue: [↑ ships second fireTorpedo]

Code Management

Exercise 9.3

1. In the System Browser, create two class categories: in its most left pane
menu select add item... (a) and key in one category name at a time.

2. Create two classes, in each category: TheCuisBook subclass of Object
and TheBookMorph subclass of MovableMorph.

The two operations above are doable in one shot. Select any existing
category and key in the class definition with the category name:

194

MovableMorph subclass: #TheBookMorph

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'TheCuisBook-Views'

Once you save the class definition, the TheBookMorph class is created –
obviously – but also the TheCuisBook-Views category!

3. Go to the Installed Packages tool ...World menu → Open... →
Installed Packages..., press the new button and key in TheCuisBook.

4. Press the save button, you are done!

195

Appendix E The Examples

Example 1: I am an example with a caption and result 3
Example 1.1: The traditional ’Hello World!’ program 9
Example 1.2: Multiple lines . 10
Example 1.3: Concatenate strings . 11
Example 2.1: Calculating the number of entities . 16
Example 2.2: Calculating the number of classes . 16
Example 2.3: Ship velocity . 18
Example 2.4: Cascade of messages . 18
Example 2.5: Stop and teleport spaceship at a random position 18
Example 2.6: Testing on integer . 22
Example 2.7: Computing the gravity force vector . 22
Example 3.1: Asking the class of an instance . 35
Example 3.2: Aligning a torpedo with its velocity direction 39
Example 3.3: Rounding numbers, Workspace try out 40
Example 3.4: Interval loops (for-loop) . 40
Example 3.5: Throwing a dice 5 times . 40
Example 3.6: Interval . 41
Example 3.7: Teleport ship . 41
Example 3.8: Integer represented in different base 42
Example 3.9: Counting like the ancients . 42
Example 3.10: Shifting bits . 43
Example 3.11: Computer dyscalculia! . 43
Example 3.12: Calculation is correct using rational fractions! 44
Example 3.13: Twelve apples . 45
Example 3.14: Torpedo class with its instance variables 49
Example 3.15: Method template . 50
Example 3.16: A method returning a constant . 51
Example 3.17: Initialize the space ship . 52
Example 4.1: Dynamic size collection . 60
Example 4.2: Set operations . 61
Example 4.3: Select prime numbers between 1 and 100 61
Example 4.4: Quantity of prime numbers between 1 and 100 62
Example 4.5: Collect cubes . 63
Example 4.6: Simple cipher . 64
Example 4.7: A for loop . 65
Example 4.8: A repeat loop . 65
Example 4.9: Collection with a fixed size . 67
Example 4.10: Collection access to elements . 67
Example 4.11: Collection with a variable size . 68
Example 4.12: Adding, removing element from a dynamic array 68
Example 4.13: Set collection . 69
Example 4.14: Set, without duplicates . 69
Example 4.15: Convert dynamic array . 69
Example 4.16: Dictionary of colors . 70

Appendix E: The Examples 196

Example 4.17: Incomplete game initialization . 72
Example 4.18: Torpedo mechanics . 73
Example 4.19: Space ship mechanics . 73
Example 4.20: Regular refresh of the game play . 74
Example 4.21: Collision between the ships and the Sun 74
Example 5.1: SpaceWar! key stroke . 76
Example 5.2: Compute divisors . 78
Example 5.3: teleport: method . 79
Example 5.4: Implementations of ifTrue:ifFalse: . 80
Example 5.5: Implementing negation . 80
Example 5.6: Ship lost in space . 81
Example 5.7: Initialize SpaceWar . 83
Example 5.8: Ship controls . 84
Example 5.9: Firing a torpedo from a space ship in motion 85
Example 5.10: Collision between the ships and the torpedoes 86
Example 6.1: Edit the behavior of this morph from its Inspector 94
Example 6.2: Edit the state of this ellipse from its Inspector 95
Example 6.3: Complete code to initialize the Spacewar! actors 100
Example 6.4: Mobile in the game play . 101
Example 6.5: Calculate the gravity force . 102
Example 6.6: Mobile’s update: method . 103
Example 6.7: Test when a mobile is “spaced out” 103
Example 6.8: Initialize overriding in the Mobile hierarchy 105
Example 7.1: Delete all instances of a given morph 109
Example 7.2: Drawing the clock dial . 116
Example 7.3: We don’t use VectorGraphics

for performance reason . 122
Example 7.4: Central star extent . 123
Example 7.5: A star with a fluctuating size . 123
Example 7.6: Space ship drawing . 124
Example 7.7: vertices an instance variable in Mobile class 128
Example 7.8: Initialize a class . 129
Example 7.9: A class instance variable value is not
shared by the sub classes . 129

Example 7.10: Vertices a class variable in Mobile 131
Example 7.11: Vertices returned by an instance method 131
Example 7.12: Collision (accurate) between the ships and the Sun . . 132
Example 8.1: Spacewar! keyboard focus effect . 138
Example 8.2: Keystroke to control the first player ship 139
Example 9.1: Change set contents . 144
Example 10.1: Ensure a FileStream is closed . 156
Example 10.2: Capture thisContext . 157
Example 10.3: Names of Directory Entries . 158
Example 10.4: Halt: Set a Breakpoint . 163

197

Appendix F The Figures

Figure 1: Cuis . 2
Figure 1.1: Set Preferences . 8
Figure 1.2: Window options . 9
Figure 1.3: Transcript window with output . 10
Figure 1.4: Spacewar! game on DEC PDP-1 minicomputer 14
Figure 1.5: Spacewar! game play . 15
Figure 2.1: The System Browser . 23
Figure 2.2: Spacewar! class category . 27
Figure 2.3: Installed Package window . 28
Figure 2.4: Equations of the accelerations, speed and position 29
Figure 3.1: Class methods in Float . 36
Figure 3.2: Instance methods in Float . 38
Figure 4.1: Browse String protocol . 54
Figure 4.2: Browse the String hierarchy . 55
Figure 5.1: Spacewar! torpedoes around . 85
Figure 6.1: Select EllipseMorph from a menu . 88
Figure 6.2: Drag construction handle to change size 89
Figure 6.3: A larger ellipse . 90
Figure 6.4: Obtain a WidgetMorph . 91
Figure 6.5: Make the rect a submorph of the ellipse 91
Figure 6.6: Middle-Click for construction handles 92
Figure 6.7: Middle-Click again to descend into submorphs 92
Figure 6.8: Add instance specific behavior . 93
Figure 6.9: Move submorph within its parent . 94
Figure 6.10: Pick a submorph out of its parent . 94
Figure 6.11: Inspect instance variables of the ellipse 95
Figure 6.12: Use Inspector to set border color and border width 96
Figure 6.13: Obtain a ColorClickEllipse . 98
Figure 6.14: Update’s inheritance button . 105
Figure 7.1: Details of our line morph . 108
Figure 7.2: A variety of triangle morphs, one decorated with
its halo and coordinates system . 111

Figure 7.3: Animated morph . 114
Figure 7.4: An animated and clipped submorph triangle 115
Figure 7.5: A clock morph . 116
Figure 7.6: Declaring unknown selectors as
instance variables in current class . 119

Figure 7.7: ClockMorph with instance variables added 119
Figure 7.8: A fancy clock morph . 120
Figure 7.9: A star with a fluctuating size . 123
Figure 7.10: Space ship diagram at game start-up 124
Figure 7.11: Torpedo diagram at game start-up . 125
Figure 7.12: The class side of the System Browser 128
Figure 7.13: The display bounds of a space ship . 132

Appendix F: The Figures 198

Figure 8.1: Spacewar! effect depending on the keyboard focus 138
Figure 9.1: Cuis-Smalltalk informs about lost changes 141
Figure 9.2: Manually select the changes to file in 142
Figure 9.3: The Change Sorter, class edit . 143
Figure 9.4: The Change Sorter, method edit . 143
Figure 9.5: The File List tool, to install a change set and more 144
Figure 9.6: Change List tool to review modifications to the image . . 145
Figure 9.7: Installed Packages Browser . 146
Figure 9.8: New Package – Morphic-Learning . 147
Figure 9.9: Select package (or Cuis base version) to require 147
Figure 9.10: Saved package – Morphic-Learning 148
Figure 9.11: Change Sorter, supplementary method to core 150
Figure 9.12: Package with extension to the Integer class of the
Kernel-Numbers system class category . 151

Figure 9.13: Environment of an image
started with the set up script . 153

Figure 10.1: Inspecting a ZeroDivide instance . 157
Figure 10.2: Names of files and directories in a Directory 158
Figure 10.3: Debug It . 159
Figure 10.4: Step Into . 161
Figure 10.5: Viewing Focus Object and Temporaries 162
Figure 10.6: Halt . 164
Figure 10.7: Step Over Breakpoint . 165
Figure 11.1: Senders of left . 168
Figure 11.2: Rename left . 169
Figure 11.3: Rename in Category . 169
Figure 11.4: Results of Renaming . 170
Figure 11.5: Senders of nose . 171
Figure 11.6: Rename nose to noseDirection . 172
Figure D.1: Placement . 180
Figure D.2: Several rectangle morphs . 189
Figure D.3: This rectangle rotates around its top left corner 190
Figure D.4: This rectangle rotates around its center 190

199

Appendix G Conceptual index

A
Array . 58, 67
array,

dynamic . 59, 175
operation . 59
size . 59
static . 175
statistic . 59

assignment, See variable

B
backtick . 123
bits shifting . 42
block . 61, 77, 176

assigned to a variable 78
ensure: . 156
local variable . 77
parameter . 61, 77

boolean . 79
breakpoint, See Tools, debugger
browser . 22

class category . 23
class category (new) 25
hierarchy . 54
invoke from Workspace 25
protocol . 54

C
Caesar cipher . 64
cascade of messages 18, 177
change log . 140
change set . 142
character . 45, 175

ascii . 19
class . 16, 30

abstract . 66
category 23, 24, 55, 145
category (new) . 25
class . 129
comment . 24
create (new) . 26
declaration . 23
inheritance . 31, 54
initialize . 128

instance variable, See variable
method, See method
protocol . 54
variable, See variable

collection . 66
access element . 67
add: . 60
at: . 60
collect: . 63, 65
convert . 69
Dictionary . 70
dynamic . 60
enumerator mechanism 61
fixed size . 66
indexOf: . 60
inject:into: . 16
instantiate array 67
instantiate variable size array 68
last . 60
OrderedCollection 60
pairsDo: . 66
select: . 61
Set . 69
set operations (union,

intersection, difference) 60
shuffled . 20
squared . 59
variable size . 68

comment . 176
control flow . 79

loop . 81
test . 79

coordinates . 48

D
debugger, See tools
Dictionary . 70

Appendix G: Conceptual index 200

E
event,

classes . 133
handling . 97, 134

keyboard . 139
mouse enter 136
mouse-enter 136

keyboard . 138
mouse . 135
testing . 96, 134

keyboard . 138
mouse over . 135

exception . 156
execution stack . 159

F
false . 75
Fibonacci sequence . 65
file . 159
float (see number) . 175
for loop, See loop
fraction, See number

G
garbage collection . 16

H
halt . 163

I
initialize . 52
inspector, See tools
instance . 16, 30

creation . 31
method, See method

instance variable . 31
integer (see number) 175
interger, See number
Interval . 40

K
keyboard shortcut,

browse a class (Ctrl-b) 25
browse hierarchy (Ctrl-h) 55
browse protocol (Ctrl-p) 54
code completion (tab) 37
execute and print result (Ctrl-p) . . . 11
executing code (Ctrl-d) 10
find a class (Ctrl-f) 24
implementors of (Ctrl-m) 34
save code (Ctrl-s) 26
select all code (Ctrl-a) 10

L
line command option,

-s (run a script) 152
literal,

number . 13
loop . 81

for . 40, 65
step . 40, 65

repeat . 40, 65

M
message,

binary . 17, 176
cascade . 18
composition . 20
getter . 49
keyword . 17, 176
precedence . 17
receiver . 16
send . 17
sender . 16
setter . 49
unary . 17, 176

method . 16, 76
category . 24, 39, 45
class method 31, 36
creating . 82
instance method 25, 33, 37
overriding . 33
returned value (explicit) 33
returned value (implicit) 34
variable, See variable

moprh,
legacy . 107

morph,
animated . 112

Appendix G: Conceptual index 201

clipsSubmorphs 115
delete . 109
drawOn: 108, 110, 116, 123
ellipse . 88
halo . 89
location . 109
morphPosition 113
movable . 109
move/pick up . 94
properties . 93
rectangle . 90
rotateBy: 113, 125
rotation: . 126
step,wantsSteps 112
subclass . 96
submorph . 90, 114
vector,

filling area . 110
installation . 107
line drawing 108

world . 153
mouse . 135

N
nil . 76
number,

abs . 34
convertion . 45
decimal . 43
decimal division . 21
float . 175
integer . 11, 175

as words . 12
atRandom 40, 79, 123
base . 12, 42
division . 21
division reminder 21
even . 21
gcd: (great common divisor) 22
isDivisibleBy: 21
isPrime . 21
lcm: (lest common multiple) 22
odd . 21
roman . 12
timesRepeat: 40

interval . 40
literal . 13
rational fraction 11, 31, 44

operations . 20
root . 20
roundTo: . 39

roundUpTo: . 39
sqrt . 20
squared . 20, 33
to: . 40
to:by: . 40
to:do . 65
to:do: . 40
to:do:by . 40
to:do:by: . 65

O
OrderedCollection 68
overriding . 33, 104

P
package . 145

create (new) . 27
load,

by code . 88
by graphic interface 28

prefix . 149
requirement . 146
save . 27
system extension 149
tool . 27

Point . 48
polymorphism . 31, 33
primitive . 176
protocol . 54
pseudo-variable,

false . 75
nil . 76
self . 75
super . 75
thisContext . 76
true . 75

pseudo-variables . 75

R
rational fraction, See number
receiver . 175
refactoring . 100, 168
repeat, See loop
returned value 2, 33, 176

Appendix G: Conceptual index 202

S
selector . 30
self . 75
sequence . 176
Set . 69
shortcut, See keyboard shortcut
string . 10, 45, 175

asArray . 20
asUppercase . 10
at:put: . 19
capitalized . 10
character access . 19
concatenate . 11
file entry . 159
indexOf: . 19
shuffled . 20
sort . 20
sorted . 20

subclass . 30
super . 53, 75
superclass . 31
symbol . 56, 175

T
test . 79
thisContext . 76
tools,

debugger . 158
breakpoint . 163

inspector . 92

lost changes . 141

recent changes . 142

system browser . 22

transcript . 10

workspace . 8

true . 75

V
variable . 57

:= . 51

← . 51

assignment 2, 51, 176

class . 130

class instance . 127

instance . 31

local . 174

declaration . 176

method . 57

shared . 174

Y
yourself . 19

	Preface
	Smalltalk Philosophy
	Historical Context
	Installing and configuring
	Editing your preferences
	Fun with window placement

	Writing your first scripts
	Fun with numbers

	Spacewar!

	The Message Way of Life
	Communicating entities
	Message send definitions
	Message to string entities
	Messages to number entities
	A brief introduction to the system Browser
	Spacewar! models
	First classes
	Spacewar! package
	The Newtonian model

	Class, Model of Communicating Entities
	Understanding Object Oriented Programming
	Explore OOP from the Browser
	Cuis system classes
	Kernel-Numbers
	Kernel-Text
	Spacewar! States and Behaviors
	The game states
	Instance variables
	Behaviors
	Initializing

	The Collection Way of Life
	String -- a particular collection
	Fun with variables
	Fun with collections
	Collections detailed
	SpaceWar! collections
	Instantiate collections
	Collections in action

	Control Flow Messaging
	Syntactic elements
	Pseudo-variables
	Method syntax
	Block syntax
	Control flow with block and message
	Spacewar!'s methods
	Initializing the game play
	Space ship controls
	Collisions

	Visual with Morph
	Installing a Package
	Ellipse Morph
	Submorph
	A brief introduction to Inspectors
	Building your specialized Morph
	Spacewar! Morphs
	All Morphs
	The art of refactoring

	The Fundamentals of Morph
	Going Vector
	A first example
	Morph you can move
	Filled morph
	Animated morph
	Morph in morph

	A Clock Morph
	Back to Spacewar! Morphs
	Central star
	Space ship
	Torpedo
	Drawing revisited
	Drawing simplified
	Collisions revisited

	Events
	System Events
	Overall Mechanism
	Spacewar! Events
	Mouse event
	Keyboard event

	Code Management
	The Image
	The Change Log
	The Change Set
	The Package
	Daily Workflow
	Automate your image

	Debug and Exception Handling
	Inspecting the Unexpected
	The Debugger
	Halt!

	Sharing Cuis
	Golden Rules of the Smalltalk Guild
	Refactoring to Improve Understanding

	Documents Copyright
	Summary of Syntax
	The Exercises
	Solutions of the Exercises
	Preface
	Smallltalk Philosophy
	The Message Way of Life
	Class, model of Communicating Entities
	The Collection Way of Life
	Control Flow Messaging
	Visual with Morph
	The Fundamentals of Morph
	Events
	Code Management

	The Examples
	The Figures
	Conceptual index

